Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 355-360    DOI: 10.3724/SP.J.1037.2013.00478
Current Issue | Archive | Adv Search |
PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY
WANG Xiaona1, HAN Lizhan1,2, GU Jianfeng1,2()
1 School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai 200240
Cite this article: 

WANG Xiaona, HAN Lizhan, GU Jianfeng. PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY. Acta Metall Sin, 2014, 50(3): 355-360.

Download:  HTML  PDF(4875KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Age-hardening effect is considerably strong in magnesium alloys containing Nd, making it possible to develop magnesium alloys with low cost and high strength. Although there have been massive researches about the precipitation product sequence and strengthening models in magnesium, aluminum and other light alloys during their ageing processes, those of NZ30K-Mg alloy, a newly-developed magnesium alloy, has not been carefully investigated. The present work mainly focuses on the model of precipitation kinetics and strengthening of NZ30K-Mg alloy. The precipitation kinetics has been investigated using electrical resistivity testing during continuous heating with different heating rates and formulated based on the isoconversional method. Two related model parameters, modified pre-exponential factor A ' α r and activation energy E α r were respectively determined. The precipitation behavior of NZ30K-Mg alloy during ageing processes can also be intrinsically explained from the variations of E α r and ln A ' α r with the precipitation fraction. This kinetics model with two above-mentioned parameters can accurately describe the precipitation of strengthening phase during different ageing processes. The yield strength of under-aged and peak-aged NZ30K-Mg alloy have been tested and the results show that the testing samples isothermally aged at different temperature from 180 to 250 ℃ have almost the same peak yield strength of about 150 MPa, indicating that the strengthening effect of under-aged and peak-aged NZ30K-Mg alloy is only determined by the precipitation fraction within a certain range of temperatures. The precipitation strengthening model of NZ30K-Mg alloy has been carefully derived, and the parameter C in the model has then been determined by least squares method based on the tested yield strength data. The value of C is about 93 MPa. The prediction of yield strength of under-aged and peak-aged NZ30K-Mg alloy has been performed and fit well with the tested ones, demonstrating the effectiveness of precipitation strengthening model and its engineering application prospects.

Key words:  NZ30K-Mg alloy      precipitation kinetics      precipitation strengthening      solid solution strengthening      yield strength     
Received:  05 August 2013     
ZTFLH:  TG166.3  
Fund: Supported by National Science and Technology Major Project (Nos.2011ZX04014-052 and 2012ZX04012011)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00478     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/355

Fig.1  

拉伸试样尺寸

Fig.2  

NZ30K镁合金在不同加热速率连续升温过程中的电阻率ρ 和析出相的体积分数αr

Fig.3  

NZ30K镁合金的析出激活能与修正指前因子随析出相相对体积分数的变化

Fig.4  

NZ30K镁合金不同温度等温时效的析出动力学曲线

Specimen No. T / ℃ t / h α r / % σ y / MPa
1 180 1 0.111 109.71
2 180 2 0.174 111.43
3 180 5 0.269 122.25
4 180 10 0.332 125.68
5 180 20 0.397 131.29
6 180 50 0.513 133.39
7 180 100 0.684 141.19
8 180 200 0.897 148.88
9 200 1 0.197 127.43
10 200 2 0.282 135.24
11 200 5 0.397 138.00
12 200 10 0.504 144.44
13 200 20 0.697 148.50
14 200 50 0.941 151.53
15 250 0.25 0.304 138.28
16 250 0.5 0.548 148.89
17 250 0.75 0.717 149.60
18 250 1 0.850 152.59
Table 1  The relative precipitation volume fraction and yield strength of NZ30K-Mg alloy isothermally aged with different conditions ( σy —yield strength)
Fig.5  

不同时效条件下NZ30K镁合金屈服强度的实验测试值和拟合值比较

[1] Li J H, Jie W Q, Yang G Y. Trans Nonferrous Met Soc China, 2008; 18: S27
[2] Li J H, Sha G, Jie W Q, Ringer S P. Mater Sci Eng, 2012; A538: 272
[3] Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A. Acta Mater, 2003; 51: 5335
[4] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Scr Mater, 2010; 63: 725
[5] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562
[6] Nuttall P A, Pike T J, Noble B. Metallography, 1980; 13: 3
[7] Fu P H, Peng L M, Jiang H Y, Chang J W, Zhai C Q. Mater Sci Eng, 2008; A486: 183
[8] Gill L R, Lorimer G W, Lyon P. Adv Eng Mater, 2007; 9: 784
[9] Ma L, Mishra R K, Balogh M P, Peng L M, Luo A A, Sachdev A K, Ding W J. Mater Sci Eng, 2012; A543: 12
[10] Nie J F, Muddle B C. Acta Mater, 2000; 48: 1691
[11] Nie J F, Ohishi K, Gao X, Hono K. Acta Mater, 2008; 56: 6061
[12] Pike T J, Noble B. J Less-common Met, 1973; 30: 63
[13] Esmaeili S, Lloyd D J. Acta Mater, 2005; 53: 5257
[14] Esmaeili S, Lloyd D J, Poole W J. Acta Mater, 2003; 51: 2243
[15] Esmaeili S, Lloyd D J, Poole W J. Acta Mater, 2003; 51: 3467
[16] Liu G, Ding X D, Sun J, Chen K H. Chin J Nonferrous Met, 2001; 11: 337
(刘 刚, 丁向东, 孙 军, 陈康华. 中国有色金属学报, 2001; 11: 337)
[17] Liu G, Zhang G J, Ding X D, Sun J, Chen K H. Rare Met Mater Eng, 2003; 32: 971
(刘 刚, 张国君, 丁向东, 孙 军, 陈康华. 稀有金属材料与工程, 2003; 32: 971)
[18] Deschamps A, Brechet Y. Acta Mater, 1999; 47: 293
[19] Deschamps A, Livet F, Bréchet Y. Acta Mater, 1998; 47: 281
[20] Esmaeili S, Vaumousse D, Zandbergen M W, Poole W J, Cerezo A, Lloyd D J. Philos Mag, 2007; 87: 3797
[21] Vyazovkin S, Burnham A K, Criado J M, Pérez-Maqueda L A, Popescu C, Sbirrazzuoli N. Thermochim Acta, 2011; 520: 1
[22] Burnham A, Dinh L. J Therm Anal Calorim, 2007; 89: 479
[23] Friedman H L. J Polym Sci, 1964; 6C: 183
[24] Ardell A J. Metall Trans, 1985; 16A: 2131
[25] Hutchinson C R, Nie J F, Gorsse S. Metall Mater Trans, 2005; 36A: 2093
[1] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[2] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[3] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[4] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[5] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[6] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[7] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[8] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[9] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[10] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[11] Rui XIE,Zheng LU,Chenyang LU,Zhengyuan LI,Xueyong DING,Chunming LIU. CHARACTERIZATION OF NANOSIZED PRECIPITATES IN 9Cr-ODS STEELS BY SAXS AND TEM[J]. 金属学报, 2016, 52(9): 1053-1062.
[12] Rui CHEN,Qingyan XU,Baicheng LIU. MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS[J]. 金属学报, 2016, 52(8): 987-999.
[13] Ke ZHANG,Qilong YONG,Xinjun SUN,Zhaodong LI,Peilin ZHAO. EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(5): 529-537.
[14] Yong LI,Mingxing GUO,Ning JIANG,Xukai ZHANG,Yan ZHANG,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATION BEHAVIORS AND PREPARATION OF AN ADVANCED Al-0.93Mg-0.78Si-0.20Cu-3.00Zn ALLOY FOR AUTOMOTIVE APPLICATION[J]. 金属学报, 2016, 52(2): 191-201.
[15] Wei GU,Jingyuan LI,Yide WANG. EFFECT OF GRAIN SIZE AND TAYLOR FACTOR ON THE TRANSVERSE MECHANICAL PROPERTIES OF 7050 ALUMINIUM ALLOY EXTRUSION PROFILE AFTER OVER-AGING[J]. 金属学报, 2016, 52(1): 51-59.
No Suggested Reading articles found!