IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS
LI Zhengcao(), CHEN Liang
Advanced Materials Laboratory, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article:
LI Zhengcao, CHEN Liang. IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS. Acta Metall Sin, 2014, 50(11): 1285-1293.
Nuclear reactor pressure vessel is the irreplaceable component of the nuclear power plant and its integrity is one of the key issues of any nuclear power plant for long term operations. Various nanofeatures, including solute clusters, matrix damage and grain boundary segregation formed in reactor pressure vessel steels in the face of neutron irradiation. These ultrafine microstructural features lead to an increase in the ductile brittle transition temperature as is the measure used to describe the irradiation embrittlement. The balance of features depends on the composition of the reactor pressure vessel steels and the irradiation conditions. This paper reviews the current phenomenological knowledge and understanding of the basic mechanisms and relevant influence factors for irradiation embrittlement of nuclear reactor pressure vessel steels. To be specific, the formation and evolution processes of the embrittling features are presented. Also, the influences of material variables, such as copper, nickel and manganese contents on irradiation embrittlement and those of irradiation variables, such as neutron flux and post irradiation annealing are summarized. In addition, fundamental research issues that remain to be addressed are briefly pointed out.
Fig.1 Atom maps of the solute distributions in reactor pressure vessel (RPV) surveillance test specimens of Doel-1 of the dose 5.9×1019 n/cm2 (a) and Doel-2 of the dose 5.1×1019 n/cm2 (b)[22]
Fig.2 APT reconstitution of a small volume of the Fe-1.1Mn-0.7Ni (atomic fraction, %) alloy after neutron irradiation up to 0.2 dpa(Iron atoms are not represented for clarity of the image) (a), and enlargement of manganese (b) and nickel (c) enriched clusters[54]
Fig.3 Composition of the clusters formed in the simulation after 0.024 dpa in the Fe-1.2Mn-0.7Ni (atomic fraction, %) alloy, according to the simulation of neutron irradiation at 300 ℃[52]
Fig.4 TEM image of a neutron irradiation-induced microstructure in pure Fe at 0.2 dpa[54]
[1]
Lambrecht M, Almazouzi A. J Phys: Conf Ser, 2011; 265: 012009
[2]
Chai M S, Lai W S, Li Z C, Feng W. Acta Metall Sin (Eng Lett), 2012; 25: 29
[3]
Odette G R, Lucas G E. Radiat Eff Defect Solids, 1998; 144: 189
[4]
Miller M K, Russell K F. J Nucl Mater, 2007; 371: 145
[5]
Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K. J Phys: Conf Ser, 2014; 505: 012014
[6]
Vincent E, Becquart C S, Pareige C, Pareige P, Domain C. J Nucl Mater, 2008; 373: 387
[7]
Zhang Q, Li Z C, Lin C, Liu B X, Ma E. J Appl Phys, 2000; 87: 4147
[8]
Phythian W J, English C A. J Nucl Mater, 1993; 205: 162
[9]
Odette G R. J Nucl Mater, 1994; 212: 45
[10]
Odette G R, Lucas G E. JOM, 2001; 53(7): 18
[11]
Lv Z. Acta Metall Sin, 2011; 47: 777
(吕 铮. 金属学报, 2011; 47: 777)
[12]
Yeli G M, Li Z C, Yu X Y, Zhang Z J. Rare Met, doi: 10.1007/s12598-013-0118-x
[13]
Chaouadi R, Gérard R. J Nucl Mater, 2005; 345: 65
[14]
Kameda J, Bevolo A J. Acta Metall, 1989; 37: 3283
[15]
Lu Z, Faulkner R G, Flewitt P E J. Mater Sci Eng, 2006; A437: 306
[16]
Glade S C, Wirth B D, Odette G R, Asoka-Kumar P. J Nucl Mater, 2006; 351: 197
[17]
Fukuya K. J Nucl Sci Technol, 2013; 50: 213
[18]
Buswell J T, Phythian W J, McElroy R J, Dumbill S, Ray P H N, Mace J, Sinclair R N. J Nucl Mater, 1995; 225: 196
[19]
Liu C L, Odette G R, Wirth B D, Lucas G E. Mater Sci Eng, 1997; A238: 202
[20]
Odette G R, Wirth B D. J Nucl Mater, 1997; 251: 157
[21]
Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F, Nanstad R K, Erak D Y, Zabusov O O. J Nucl Mater, 2009; 385: 615
[22]
Toyama T, Nagai Y, Tang Z L, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852
[23]
Othen P J, Jenkins M L, Smith G D W. Philos Mag, 1994; 70A: 1
[24]
Charleux M, Livet F, Bley F, Louchet F, Brechet Y. Philos Mag, 1996; 73A: 883
[25]
Monzen R, Iguchi M, Jenkins M L. Philos Mag Lett, 2000; 80(3): 137
[26]
Nicol A C, Jenkins M L, Kirk M A. Mater Res Soc Symp Proc, 1999; 540: 409
[27]
Buswell J T, Bischler P J E, Fenton S T, Ward A E, Phythian W J. J Nucl Mater, 1993; 205: 198
[28]
Arokiam A C, Barashev A V, Bacon D J, Osetsky Y N. Philos Mag, 2007; 87: 925
[29]
Grosse M, Denner V, Bohmert J, Mathon M H. J Nucl Mater, 2000; 277: 280
[30]
Ulbricht A, Boehmert J. Physica, 2004; 350B: E483
[31]
Goodman S R, Brenner S S, Low J R. Metall Trans, 1973; 4: 2371
[32]
Miller M K, Wirth B D, Odette G R. Mater Sci Eng, 2003; A353: 133
[33]
Zhang C, Enomoto M, Yamashita T, Sano N. Metall Mater Trans, 2004; 35A: 1263
[34]
Lozano-Perez S, Titchmarsh J M, Jenkins M L. Ultramicroscopy, 2006; 106(2): 75
[35]
Sumiyama K, Yoshitake Y, Nakamura Y. Acta Metall, 1985; 33: 1785
[36]
Wirth B D. PhD Dissertation, University of California Santa Barbara, 1995
[37]
Fine M E, Liu J Z, Asta M D. Mater Sci Eng, 2007; A463: 271
[38]
Miller M K, Hetherington M G. Surf Sci, 1991; 246: 442
[39]
Vurpillot F, Bostel A, Blavette D. Appl Phys Lett, 2000; 76: 3127
Meslin E, Radiguet B, Pareige P, Toffolon C, Barbu A. Exp Mech, 2011; 51: 1453
[52]
Ngayam-Happy R, Becquart C S, Domain C, Malerba L. J Nucl Mater, 2012; 426: 198
[53]
Meslin E, Radiguet B, Pareige P, Barbu A. J Nucl Mater, 2010; 399: 137
[54]
Meslin E, Lambrecht M, Hernandez-Mayoral M, Bergner F, Malerba L, Pareige P, Radiguet B, Barbu A, Gomez-Briceno D, Ulbricht A, Almazouzi A. J Nucl Mater, 2010; 406: 73
[55]
Miller M K, Sokolov M A, Nanstad R K, Russell K F. J Nucl Mater, 2006; 351: 187
[56]
Meslin E, Radiguet B, Loyer-Prost M. Acta Mater, 2013; 61: 6246
[57]
Vincent E, Becquart C S, Domain C. J Nucl Mater, 2006; 359: 227
[58]
Olsson P, Klaver T P C, Domain C. Phys Rev, 2010; 81B: 054102
[59]
Hyde J M, Burke M G, Boothby R M, English C A. Ultramicroscopy, 2009; 109: 510
[60]
Miller M K, Russell K F, Kocik J, Keilova E. J Nucl Mater, 2000; 282: 83
[61]
Williams T J, Ellis D, Swan D I, McGuire J, Walley S P, English C A, Venables J H, de la cour Ray P H N. Proc 2nd Int Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey: ANS, 1986: 323
[62]
Williams T J, Burch P R, English C A, de la cour Ray P H N. Proc 3rd Int Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, New York: ASME, 1988: 121
WANG Wendong; ZHANG Sanhong; HE Xinlai(University of Science and Technology Beijing; 100083)(Manuscript received 93-09-21. in revised form 94-01-26). DIFFUSION OF BORON IN Fe-BASE AND Ni-BASE ALLOYS[J]. 金属学报, 1995, 31(2): 56-63.
LU Feng;CAO Fengyu;LI Chengji;ZHANG Yongxiang;CHEn Yonggang University of Science and Technology Beijing Beijing Institute of Machine Tools Correspondent Faculty of Metallograph; University of Science of and technology Beijing; Beijing 100083. ALLOYING BEHAVIOUR OF Ca IN 58CrV STEEL[J]. 金属学报, 1992, 28(6): 7-12.