Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 407-413    DOI: 10.3724/SP.J.1037.2011.00606
论文 Current Issue | Archive | Adv Search |
STUDY ON THE PRECIPITATION OF Cu-RICH CLUSTERS IN THE RPV MODEL STEEL BY APT
XU Gang1, CAI Linling1, FENG Liu1, ZHOU Bangxin1,2,LIU Wenqing1,2, WANG Jun'an1,2
1. Institute of Materials, Shanghai University, Shanghai 200072
2. Laboratory for Microstructures, Shanghai University, Shanghai 200444
Download:  PDF(759KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Reactor pressure vessel (RPV) is nonreplaceable component for the pressurized water reactor (PWR) in the nuclear power plants. RPVs are usually made of low alloy ferritic steels and A508-III steel is one type of these materials. After long-term service under the neutron irradiation, the ductile-to-brittle transition temperature (DBTT) of the RPV steel, which is the main parameter used to measure the degree of the embrittlement, will shift towards higher temperature. This phenomenon is termed irradiation-induced embrittlement, and it is a main factor to affect the operation safety and the lifetime of nuclear power plants. It is realized that the irradiation-induced embrittlement is mainly attributed to the precipitation of Cu-rich nanophases with a high number density. The precipitation process of Cu-rich nanophases can be well characterized by an atom probe tomography (APT) analysis for their size, composition and number density, and the Cu-rich nanophases obtained by the APT analysis are usually termed Cu-rich clusters. It is worthwhile to investigate the  precipitation process of Cu-rich clusters by thermal aging for better understanding the mechanism of embrittlement. In order to accelerate the precipitation of Cu-rich clusters, experiment was performed by a RPV model steel containing higher Cu content than commercially available A508-III steel. RPV model steel was prepared by vacuum induction melting with higher content of Cu (0.6%, mass fraction). The specimens of the RPV model steel were tempered at 660 ℃ for 10 h followed by air cooling after water quenching from 880 ℃, and then they were isothermally aged at 370 ℃ for different time. The precipitation process of Cu-rich clusters is investigated by APT analysis. The results show that the Cu-rich clusters are on the stage of the nucleation when the specimens were aged at 370 ℃ for 1150 h. After specimens were aged for 3000 and 13200 h, the average equivalent diameter of the Cu-rich clusters increases from 1.5 nm to 2.4 nm, and the average Cu content in the Cu-rich clusters vary from 45% to 55 % (atomic fraction). The number density of the Cu-rich clusters in both types of the specimens is at the order of 1022 m-3. The Cu concentration in the ferritic matrix is (0.15±0.02)% for the specimen aged at 370 ℃ for 13200 h, which is still higher than the limitation of Cu solubility in the ferritic matrix at 370 ℃. It means that the precipitation process of Cu-rich clusters does not reach the equilibrium state. The analysis results also show that Ni, Si, P atoms, but not Cu atoms, segregate near the interface between the cementite and the ferritic matrix, and Mn, Mo, S atoms are enriched in the cementite.
Key words:  reactor pressure vessel model steel      Cu-rich cluster      atom probe tomography      phase interface     
Received:  28 September 2011     
ZTFLH: 

TL341

 
Fund: 

National Basic Research Program of China

Corresponding Authors:  zhoubx@shu.edu.cn      E-mail:  zhoubx@shu.edu.cn

Cite this article: 

XU Gang, CAI Linling, FENG Liu, ZHOU Bangxin,LIU Wenqing, WANG Jun'an. STUDY ON THE PRECIPITATION OF Cu-RICH CLUSTERS IN THE RPV MODEL STEEL BY APT. Acta Metall Sin, 2012, 48(4): 407-413.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00606     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/407

[1] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, van Walle E, Gerard R.  Acta Mater, 2007; 55: 6852

[2] Auger P, Pareige P, Welzel S, Van Duysen J C.  J Nucl Mater,2000; 280: 331

[3] Miller M K, Russell K F, Sokolov M A, Nanstad R K.  J Nucl Mater,2007; 361: 248

[4] Miller M K, Russell K F, Sokolov M A, Nanstad R K.  J Nucl Mater,2003; 320: 177

[5] Miller M K, Nanstad P K, Sokolov M A, Russell K F.  J Nucl Mater,2006; 351: 216

[6] Phythian W J, English C A.  J Nucl Mater, 1993; 205: 162

[7] Fukuya K, Ohno K, Nakata H, Dumbill S, Hyde J M.  J Nucl Mater, 2003; 312: 163

[8] Carter R G, Soneda N, Dohi K, Hyde J M, English C A, Server W L. J Nucl Mater, 2001; 298: 211

[9] Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F,Nanstad R K, Erak D Y, Zabusov O O.  J Nucl Mater, 2009; 385: 615

[10] Miller M K, Russell K F.  J Nucl Mater, 2007; 371: 145

[11] Hornbogen E, Glenn R C.  Trans Metall Soc AIME, 1960; 218: 1064

[12] Speich G R, Oriani R A.  Trans Metall Soc AIME, 1965; 233: 623

[13] Goodman S R, Brenners S S, Low J R.  Metall Trans, 1973; 4: 2363

[14] Pizzini S, Roberts K J, Phythian W J, English C A, Greaves G N. Philos Mag Lett, 1990; 61: 223

[15] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Philos Mag Lett, 1991; 64: 383

[16] Othen P J, Jenkins M L, Smith G D W.  Philos Mag, 1994; 70A: 1

[17] Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W. Prog Nucl Energ, 2011, doi:10.1016/j.pnucene.2011.10.010

[18] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X. Acta Metall Sin, 2011; 47: 269

     (楚大锋, 徐刚, 王伟, 彭剑超, 王均安, 周邦新. 金属学报,2011; 47: 269)

[19] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C. Acta Metall Sin, 2011; 47: 905

     (徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超.金属学报, 2011; 47: 905)

[20] Miller M K.  Atom Probe Tomography: Analysis at the Atomic Level.New York: Kliwer Academic/Plenum Publishers, 2000: 25

[21] Starink M J, Zahra A M.  Philos Mag, 1998; 77: 187

[22] Starink M J, Zahra A M.  Thermochim Acta, 1997; 292: 159

[23] Miller M K, Russell K F, Pareige P, Starink M J, Thomson R C. Mater Sci Eng, 1998; A250: 49

[24] Zhu J J, Wang W, Lin M D, Liu W Q, Wang J A, Zhou B X. J Shanghai Univ (Nat Sci), 2008; 5: 525

     (朱娟娟, 王伟, 林民东, 刘文庆, 王均安, 周邦新.上海大学学报(自然科学版), 2008; 5: 525)

[25] Buswell J T, English C A, Herherington M G, Phythian W J,

Smith G D W, Worral G M. In: Steele L E ed.,  Proc 14th Int Symp Effects of Radiation on Materials, Vol.2, Andover, Massachusseetts: The American Society for Testing and Materials, 1990: 127
[1] Qin SHEN,Xiaojiao WANG,Anyu ZHAO,Yifeng HE,Xulei FANG,Jiarong MA,Wenqing LIU. EFFECTS OF Mn ON MULTI-PRECIPITATES EVOLUTION OF Cu-RICH AND NiAl PHASE IN STEELS[J]. 金属学报, 2016, 52(5): 513-518.
[2] WANG Bo, WANG Xiaojiao, SONG Hui, YAN Jujie, QIU Tao, LIU Wenqing, LI Hui. STRENGTHENING EFFECTS OF MICROSTRUCTURE EVOLUTION DURING EARLY AGEING PROCESS IN Al-Mg-Si ALLOY[J]. 金属学报, 2014, 50(6): 685-690.
[3] WANG Xiaojiao, SHEN Qin, YAN Jujie, QIU Tao, WANG Bo, LI Hui, LIU Wenqing. PRECIPITATION CHARACTERIZATION OF NiAl AND Cu-RICH PHASES IN DUAL-PHASE REGION OF PRECIPITATION STRENGTHENING STEEL[J]. 金属学报, 2014, 50(11): 1305-1310.
[4] LIU Wenqing, LIU Qingdong, GU Jianfeng. DEVELOPMENT AND APPLICATION OF ATOM PROBE TOMOGRAPHY[J]. 金属学报, 2013, 49(9): 1025-1031.
[5] WEI Zhaozhao, MA Xiao, ZHANG Xinping. STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY[J]. 金属学报, 2013, 49(2): 187-198.
[6] XU Gang CAI Linling FENG Liu ZHOU Bangxin LIU Wenqing WANG Junan. SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT[J]. 金属学报, 2012, 48(7): 789-796.
[7] XU Gang, CAI Linling, FENG Liu, ZHOU Bangxin,WANG Jun'an,ZHANG Haisheng. EFFECT OF THE PRECIPITATION OF Cu-RICH CLUSTERS ON THE DBTT OF RPV SIMULATED STEEL[J]. 金属学报, 2012, 48(6): 753-758.
[8] SONG Lunan LIU Jiabin HUANG Liuyi ZENG Yuewu MENG Liang. EFFECT OF HEAVILY DRAWING ON THE MICROSTRUCTURE AND PROPERTIES OF Cu–Cr ALLOYS[J]. 金属学报, 2012, 48(12): 1459-1466.
[9] XU Gang CHU Dafeng CAI Linling ZHOU Bangxin WANG Wei PENG Jianchao. INVESTIGATION ON THE PRECIPITATION AND STRUCTURAL EVOLUTION OF Cu-RICH NANOPHASE IN RPV MODEL STEEL[J]. 金属学报, 2011, 47(7): 905-911.
[10] CHU Dafeng XU Gang WANG Wei PENG Jianchao WANG Jun’an ZHOU Bangxin. APT AND EXTRACTION REPLICA CHARACTERIZATION OF Cu–RICH CLUSTERS PRECIPITATED IN PRESSURE VESSEL MODEL STEELS[J]. 金属学报, 2011, 47(3): 269-274.
No Suggested Reading articles found!