Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 110-120    DOI: 10.3724/SP.J.1037.2013.00308
Original Articles Current Issue | Archive | Adv Search |
PHASE FIELD CRYSTAL SIMULATION OF DISLOCA- TION MOVEMENT AND REACTION
GAO Yingjun1,2(), LU Chengjian1,3, HUANG Lilin1, LUO Zhirong1,3, HUANG Chuanggao1,2
1 College of Physics Science and Engineering, Guangxi University, Nanning 530004
2 Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
3 Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000
Cite this article: 

GAO Yingjun, LU Chengjian, HUANG Lilin, LUO Zhirong, HUANG Chuanggao. PHASE FIELD CRYSTAL SIMULATION OF DISLOCA- TION MOVEMENT AND REACTION. Acta Metall Sin, 2014, 50(1): 110-120.

Download:  HTML  PDF(13829KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transformations of grain boundaries often strongly influence both the structure and the properties of polycrystalline and nanocrystalline materials. Thus, plastic deformation processes in fine-grained polycrystals and nanocrystalline solids are associated with transformations of grain boundaries, which crucially affect the structure and mechanical characteristics of such solids. Motion of grain boundary dislocations in plastically deformed materials is commonly considered to be the absorption of lattice dislocations by grain boundaries. In order to reveal the mechanism of motion of a low-angle symmetric tilt grain boundary (STGB) associated with the emission and absorption of lattice dislocation, the emission and evolution of a STGB under strain were simulated by phase-field crystal (PFC) model. The decay of STGB and dislocation reactions of separation, annihilation and mergence and their mechanisms were analyzed from the energy point of view, furthermore, the active energy of the dislocation separation was calculated. The research results show that the low-angle STGB is composed of pair dislocations in a line arrangement in two dimensions of triangular atomic lattice, in which there are two sets of basic Burgers vectors. The evolution process of STGB decay can be divided into six typical stages which includes the detail features as: dislocation climbs firstly along the STGB under strain, then the dislocation occurs to break up into two new dislocations after it gets enough energy to overcome the active potential barrier of dislocation, at this time the STGB emits pair dislocations to move in gliding in grain instead of climbing along STGB; gliding for while, the dislocation crosses the grain until it is annihilated by another dislocation at the STGB right in the front, i.e. the Grain boundary absorbs or merges the gliding dislocation. The remain of dislocation in the STGB can still climb along the grain boundary in which splits off again into two dislocations when it gets enough energy, at the same time it looks as if STGB emits the dislocations and changes the dislocation movement from climbing to gliding again. The dislocation continues gliding until it meets another gliding dislocation in grain to be annihilated, finally the total dislocations are annihilated and the STGB disappears. The two grain systems with STGB become one grain system. The two sets of basic Burgers vectors of lattice dislocation in triangular lattice can validly be used to express the dislocation reaction of emission, separation, mergence, absorption, annihilation, and also can reveal the creation of new Burgers vector and the annihilation of old Burgers vectors and mechanism of the directional change of Burgers vectors during the dislocation reaction.

Key words:  grain boundary      dislocation reaction      strain      phase-field crystal model     
Received:  04 June 2013     
ZTFLH:  TG111.2  
Fund: Supported by National Natural Science Foundation of China (Nos.51161003 and 50661001), Natural Science Foundation of Guangxi Province (No.2012GXNSFDA053001), Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (No.GXKFJ12-01) and Science Foundation of Guangxi University (No.XJZ110611)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00308     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/110

Fig.1  

取向差θ=6.7°时的晶界湮没过程模拟

Fig.2  

晶界位向差θ=6.7°的体系自由能随时间变化的曲线

Fig.3  

位错分解过程的自由能-时间曲线

Fig.4  

位错相遇湮没过程的自由能随时间变化曲线

Fig.5  

位错合并过程的自由能随时间变化曲线

Fig.6  

面心立方(fcc)晶格原子排列点阵及原子排列取向角

Fig.7  

位错对的晶体相场模拟与HRTEM像的结构图对比

Fig.8  

二维三角晶体中刃位错的多余原子面的原子排列方向和对应的刃位错的Burgers矢量的方向

Fig.9  

1个晶界位错对分解成2个位错对的过程

Fig.10  

2个位错对合并成1个位错对的过程

Fig.11  

2个异号位错对发生湮没的过程

[1] Xu H J,Liu G X. Fundamentals of Materials Science. Beijing: Beijing University of Technology Press, 2001: 265
(徐恒均,刘国勋. 材料科学基础. 北京: 北京工业大学出版社, 2001: 265)
[2] Hu G X,Cai X. Fundamentals of Materials Science. Shanghai:Shanghai Jiao Tong University Press, 2010: 99
(胡赓祥,蔡 珣. 材料科学基础. 上海: 上海交通大学出版社, 2010: 99)
[3] Bobylev S V, Ovid’ko I A.Phys Rev, 2003; 67B: 132506
[4] Ovidko I A, Skiba N V.Scr Mater, 2012; 67: 13
[5] Gukkin M Y, Ovidko I A.Phys Rev, 2001; 63B: 064515
[6] Gukkin M Y, Ovidko I A.Acta Mater, 2004; 52: 3793
[7] Hayakawa M, Yamaguchi K, Kimura M.Mater Lett, 2004; 58: 2565
[8] Elder K R, Katakowski M, Haataja M, Grant M.Phys Rev Lett, 2002; 88: 245701
[9] Elder K R, Grant M. Phys Rev, 2004; 70E: 51605
[10] Stefanovic P, Haataja M, Provatas N.Phys Rev, 2009; 80E: 046107
[11] Berry J, Grant M, Elder K R.Phys Rev, 2006; 73E: 31609
[12] Pan S Y, Zhu M F.Acta Phys Sin, 2012; 61: 228102
(潘诗琰, 朱鸣芳. 物理学报, 2012; 61: 228102)
[13] Chen Y, Kang X H, Li D Z.Acta Phys Sin, 2009; 58: 390
(陈 云, 康秀红, 李殿中. 物理学报, 2009; 58: 390)
[14] Gao Y J, Luo Z R, Zhang S Y, Huang C G.Acta Metall Sin, 2010; 46: 1473
(高英俊, 罗志荣, 张少义, 黄创高. 金属学报, 2010; 46: 1473)
[15] Yang T, Chen Z, Dong W P.Acta Metall Sin, 2011; 47: 1301
(杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[16] Ren X, Wang J C, Yang Y J, Yang G C.Acta Phys Sin, 2010; 59: 3595
(任 秀, 王锦程, 杨玉娟, 杨根仓, 物理学报, 2010; 59: 3595 )
[17] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J ComputPhys, 2013; 30: 577
(高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶. 计算物理, 2013; 30: 577)
[18] Elder K R, Huang Z, Provatas N.Phys Rev, 2010; 81E: 11602
[19] Yu Y M, Backofen R, Voigt A.J Cryst Growth, 2011; 318: 18
[20] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T.Phys Rev Lett, 2012; 108: 226102
[21] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K.Acta Phys Sin, 2013; 62: 050507
(高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[22] Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83B: 031601
[23] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[24] Gao Y J, Luo Z R, Huang L L, Lin K.Chin J Nonferrous Met, 2013; 23: 1892
(高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892)
[25] Chen L Q, Shen J.Comput Phys Commun, 1998; 108: 147
[26] Hirouchi T, Takaki T, Tomita Y.Int J Mech Sci, 2010; 52: 309
[27] Gao Y J, Luo Z R, Hu X Y, Huang C G.Acta Metall Sin, 2010; 46: 1161
(高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)
[28] Gao Y J, Luo Z R, Huang L L, Hu X Y.Acta Metall Sin, 2012; 48: 1215
(高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[29] Wu K A, Voorhees P W.Acta Mater, 2012; 60: 407
[30] Mills M J, Daw M S, Foiles S M.Ultramicroscopy, 1994; 56: 79
[31] Shao Y F, Yao X, Zhao X, Wang S Q.Chin Phys, 2012; 21B: 083101
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[7] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[8] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[9] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[10] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[11] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[13] REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. 金属学报, 2022, 58(7): 911-920.
[14] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[15] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
No Suggested Reading articles found!