Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 110-120    DOI:
Original Articles Current Issue | Archive | Adv Search |
PHASE FIELD CRYSTAL SIMULATION OF DISLOCA-TION MOVEMENT AND REACTION
GAO Yingjun 1,2), LU Chengjian 1,3), HUANG Lilin 1) LUO Zhirong 1,3), HUANG Chuanggao 1,2)
1) College of Physics Science and Engineering, Guangxi University, Nanning 530004
2) Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
3) Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000
Download:  HTML  PDF(13829KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transformations of grain boundaries often strongly influence both the structure and the properties of polycrystalline and nanocrystalline materials. Thus, plastic deformation processes in fine-grained polycrystals and nanocrystalline solids are associated with transformations of grain boundaries, which crucially affect the structure and mechanical characteristics of such solids. Motion of grain boundary dislocations in plastically deformed materials is commonly considered to be the absorption of lattice dislocations by grain boundaries. In order to reveal the mechanism of motion of a low-angle symmetric tilt grain boundary (STGB) associated with the emission and absorption of lattice dislocation, the emission and evolution of a STGB under strain were simulated by phase-field crystal (PFC) model. The decay of STGB and dislocation reactions of separation, annihilation and mergence and their mechanisms were analyzed from the energy point of view, furthermore, the active energy of the dislocation separation was calculated. The research results show that the low-angle STGB is composed of pair dislocations in a line arrangement in two dimensions of triangular atomic lattice, in which there are two sets of basic Burgers vectors. The evolution process of STGB decay can be divided into six typical stages which includes the detail features as: dislocation climbs firstly along the STGB under strain, then the dislocation occurs to break up into two new dislocations after it gets enough energy to overcome the active potential barrier of dislocation, at this time the STGB emits pair dislocations to move in gliding in grain instead of climbing along STGB; gliding for while, the dislocation crosses the grain until it is annihilated by another dislocation at the STGB right in the front, i.e. the Grain boundary absorbs or merges the gliding dislocation. The remain of dislocation in the STGB can still climb along the grain boundary in which splits off again into two dislocations when it gets enough energy, at the same time it looks as if STGB emits the dislocations and changes the dislocation movement from climbing to gliding again. The dislocation continues gliding until it meets another gliding dislocation in grain to be annihilated, finally the total dislocations are annihilated and the STGB disappears. The two grain systems with STGB become one grain system. The two sets of basic Burgers vectors of lattice dislocation in triangular lattice can validly be used to express the dislocation reaction of emission, separation, mergence, absorption, annihilation, and also can reveal the creation of new Burgers vector and the annihilation of old Burgers vectors and mechanism of the directional change of Burgers vectors during the dislocation reaction.

Key words:  grain boundary      dislocation reaction      strain      phase-field crystal model     
Received:  04 June 2013     
ZTFLH:  TG111.2  
Corresponding Authors:  GAO Yingjun, professor, Tel: (0771)3232666, E-mail: gaoyj@gxu.edu.cn   

Cite this article: 

GAO Yingjun,LU Chengjian,HUANG Lilin, LUO Zhirong,HUANG Chuanggao. PHASE FIELD CRYSTAL SIMULATION OF DISLOCA-TION MOVEMENT AND REACTION. Acta Metall Sin, 2014, 50(1): 110-120.

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/110

[1] Xu H J, Liu G X. Fundamentals of Materials Science. Beijing: Beijing University of Technology Press, 2001: 265
(徐恒均, 刘国勋. 材料科学基础. 北京: 北京工业大学出版社, 2001: 265)
[2] Hu G X, Cai X. Fundamentals of Materials Science. Shanghai:Shanghai Jiao Tong University Press, 2010: 99
(胡赓祥, 蔡 珣. 材料科学基础. 上海: 上海交通大学出版社, 2010: 99)
[3] Bobylev S V, Ovid’ko I A. Phys Rev, 2003; 67B: 132506
[4] Ovidko I A, Skiba N V. Scr Mater, 2012; 67: 13
[5] Gukkin M Y, Ovidko I A. Phys Rev, 2001; 63B: 064515
[6] Gukkin M Y, Ovidko I A. Acta Mater, 2004; 52: 3793
[7] Hayakawa M, Yamaguchi K, Kimura M. Mater Lett, 2004; 58: 2565
[8] Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[9] Elder K R, Grant M. Phys Rev, 2004; 70E: 51605
[10] Stefanovic P, Haataja M, Provatas N. Phys Rev, 2009; 80E: 046107
[11] Berry J, Grant M, Elder K R. Phys Rev, 2006; 73E: 31609
[12] Pan S Y, Zhu M F. Acta Phys Sin, 2012; 61: 228102
(潘诗琰, 朱鸣芳. 物理学报, 2012; 61: 228102)
[13] Chen Y, Kang X H, Li D Z. Acta Phys Sin, 2009; 58: 390
(陈 云, 康秀红, 李殿中. 物理学报, 2009; 58: 390)
[14] Gao Y J, Luo Z R, Zhang S Y, Huang C G. Acta Metall Sin, 2010; 46: 1473
(高英俊, 罗志荣, 张少义, 黄创高. 金属学报, 2010; 46: 1473)
[15] Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301
(杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[16] Ren X, Wang J C, Yang Y J, Yang G C. Acta Phys Sin, 2010; 59: 3595
(任 秀, 王锦程, 杨玉娟, 杨根仓, 物理学报, 2010; 59: 3595 )
[17] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J Comput Phys, 2013; 30: 577
(高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶. 计算物理, 2013; 30: 577)
[18] Elder K R, Huang Z, Provatas N. Phys Rev, 2010; 81E: 11602
[19] Yu Y M, Backofen R, Voigt A. J Cryst Growth, 2011; 318: 18
[20] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Phys Rev Lett, 2012; 108: 226102
[21] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K. Acta Phys Sin, 2013; 62: 050507
(高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[22] Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83B: 031601
[23] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[24] Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892
(高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892)
[25] Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147
[26] Hirouchi T, Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 309
[27] Gao Y J, Luo Z R, Hu X Y, Huang C G. Acta Metall Sin, 2010; 46: 1161
(高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)
[28] Gao Y J, Luo Z R, Huang L L, Hu X Y. Acta Metall Sin, 2012; 48: 1215
(高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[29] Wu K A, Voorhees P W. Acta Mater, 2012; 60: 407
[30] Mills M J, Daw M S, Foiles S M. Ultramicroscopy, 1994; 56: 79
[31] Shao Y F, Yao X, Zhao X, Wang S Q. Chin Phys, 2012; 21B: 083101
[1] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[2] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[3] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[4] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[5] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[6] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[7] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[8] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[9] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[10] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[11] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[12] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[13] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[14] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[15] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
No Suggested Reading articles found!