Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 797-803    DOI: 10.3724/SP.J.1037.2013.00061
Current Issue | Archive | Adv Search |
NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING
ZHAO Bo1), WU Chuansong1),JIA Chuanbao2), YUAN Xin2)
1)Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061
2)Shandong Provincial Key Laboratory of Special Welding Technology,Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001
Cite this article: 

ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING. Acta Metall Sin, 2013, 49(7): 797-803.

Download:  PDF(1617KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Underwater wet flux-cored arc welding (FCAW) has great potential prospects of wide application in ocean engineering due to its easiness of automation and high weld quality. However, the thermal process of underwater wet welding is more complicated: the arc energy distribution is more concentrated in high-pressure environment of underwater, the convection heat transfer coefficient of the weldment under water is much larger than that in air. This study focuses on establishing the numerical model for analyzing the thermal process and the temperature field in underwater wet FCAW by using the FEM software SYSWELD. Both the generalities and peculiarities of the conventional GMAW (gas metal arc welding) in air and underwater wet FCAW processes are taken into consideration, especially the two remarkable characteristics of underwater wet welding, i.e., the water compressing action to the arc, and the enhanced heat losses caused by the surrounding water. Based on the calculated temperature profiles, the weld bead shape and sizes are predicted in underwater FCAW, which lays the foundation for the process optimization. It is found that under 4 groups of typical welding conditions the calculated weld bead dimensions are in agreement with the experimental ones, which validated the energy distribution pattern of the heat source and the numeric model for underwater wet welding. Experiments showed that the weld bead was thinner and deeper in underwater wet welding than that in conventional GMAW under the same welding parameters, while the variation regularity of weld bead profile is similar.

Key words:  underwater wet welding      flux-cored arc welding      temperature field      weld bead profile     
Received:  28 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00061     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/797

[1] Anand A, Khajuria A.  Int J Mech Eng Rob Res, 2013; 2: 215

[2] Song B T.  Underwater Welding and Cutting. Beijing: China Machine Press, 1989:5
(宋宝天. 水下焊接与切割. 北京: 机械工业出版社, 1989: 5)
[3] Rowe M D, Liu S, Reynolds T J.  Weld J, 2002; 81(8): 156
[4] Rowe M D, Liu S.  Sci Technol Weld Join, 2001; 6: 387
[5] Ibarra S, Grubbs C E, Liu S. In: Liu S, Olson D L, Smith C, Spencer J S eds.,Proceedings: International Workshop on Underwater Welding of Marine Structures,New Orleans: American Bureau of Shipping, 1994: 49
[6] Kang D.  PhD Dissertation, Ohio State University, Diss, 1996
[7] Chen B, Zhang H T, Feng J C.  Appl Mech Mater, 2013; 300: 500
[8] Puchol R Q, Gonzalez L P, Scott A D, Bracarense A Q, Pessoa E C P.  Weld Int, 2010; 24: 911
[9] Pessoa E C P, Bracarense A Q, Zica E M, Liu S, Perez-Guerrero F.J Mater Process Technol, 2006; 179: 239
[10] Rodriguez--Sacuteanchez J E, Rodriguez-Castellanos A,Perez-Guerrero F, Carbajal-Romero M F, Liu S.  Fatigue Fract
[11] Zhang H T, Jiang W J, Feng J C, Zhong S S.  Adv Mater Res, 2011; 337: 448
[12] Wu C S.  Weld Joining, 2010; (5): 1
(武传松. 焊接, 2010; (5): 1)
[13] The Welding Institute, E. O. Paton Electric Welding Institute, translated by Jiao X D, Zhou C F, Shen Q P, Liu D H, Chen Y.Underwater Wet Welding and Cutting. Beijing: Petroleum Industry Press, 2007: 37
(英国焊接研究所,乌克兰巴顿电焊研究所 著, 焦向东, 周灿丰, 沈秋平, 刘德华, 陈煜 译.水下湿式焊接与切割. 北京: 石油工业出版社, 2007: 37)
[14] Zhang H T, Gao H Y, Jiang W J, Zhong S S.  Appl Mech Mater, 2011; 80: 704
[15] Jia C B, Zhang T, Maksimov S Y, Yuan X.  J Mater Process Technol, 2013; 213: 1370
[16] Suga Y.  Welding Under Extreme Conditions. Oxford: Pergamon Press, 1989: 207
[17] Suga Y, Hasui A.  Weld Int, 1989; 3: 131
[18] Schmidt H P, Gunter S.  IEEE Trans Plasma Sci, 1996; 24: 1229
[19] Zhao H X.  PhD Dissertation, Beijing University of Chemical Technology, 2007
(赵华夏. 北京化工大学博士学位论文, 2007)
[20] Yang Q M.  PhD Dissertation, South China University of Technology, Guangzhou,1996
(杨乾铭. 华南理工大学博士论文, 广州, 1996)
[21] Azar A S, Woodward N, Fostervoll H, Akselsen O M.  J Mater Process Technol, 2012; 212: 211
[22] Li Z G, Zhang H, Jia J P.  Trans Chin Weld Inst, 2010; 31(7): 17
(李志刚, 张华, 贾剑平. 焊接学报, 2010; 31(7): 17)
[23] Li C X, Zhen X S, Jin J Z.  Foundry, 2001; 50(1): 141
(李朝霞, 郑贤淑, 金俊泽. 铸造, 2001; 50(1): 141)
[24] Yang S M, Tao W Q.  Heat Transfer. 4th Ed., Beijing: Higher Education Press, 2006: 8
(杨世铭, 陶文铨. 传热学. 第四版, 北京: 高等教育出版社, 2006: 8)
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[4] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[6] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[7] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[8] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[9] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[10] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[11] Qiaodan Hu; Peng Luo; Jianguo Li. FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE[J]. 金属学报, 2008, 44(10): 1253-1259 .
[12] . Numerical Simulation of two-phase Solidification Process of[J]. 金属学报, 2007, 43(6): 668-672 .
[13] XiaoSong Feng. TEMPERATURE FILED SIMULATION OF LASER BRAZING FOR GALVANIZED STEEL SHEETS[J]. 金属学报, 2006, 42(8): 882-886 .
[14] . Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)[J]. 金属学报, 2006, 42(5): 449-453 .
[15] . NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING[J]. 金属学报, 2006, 42(3): 311-316 .
No Suggested Reading articles found!