Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1227-1233    DOI: 10.3724/SP.J.1037.2013.00266
Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY
MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
Cite this article: 

MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY. Acta Metall Sin, 2013, 49(10): 1227-1233.

Download:  PDF(1516KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electronic structure and elastic properties of Mg2Sn, Mg2Ca and MgZn2 phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT). The calculated lattice parameters were in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Mg2Sn has the strongest alloying ability and structural stability. The density of states (DOS) of Mg2Sn, Mg2Ca and MgZn2 phases were calculated to analyze the mechanism of structural stability and mechanical properties. The calculated band structures show that Mg2Sn phase has the widest bandgap. The electron density difference indicate that bonding characteristics of Mg2Sn, Mg2Ca and MgZn2 phases were all covalent bond, ionic bond and metallic bond. The elastic constants of Mg2Sn, Mg2Ca and MgZn2 phases are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson's ratio are then derived. Bulk moduli is assumed to be the ability of material resistance to volume change by applied stress, the larger bulk modulus of MgZn2 phase shows that it has stronger ability to resist deformation. Shear moduli is a measure of resistance to shear strain deformation under the deformation condition of shear stress, the larger shear moduli value of Mg2Sn phase indicates that it has the stronger ability to resist shear strain deformation. The calculated Poisson's ration shows that MgZn2 has the largest value, and then followed by Mg2Ca and Mg2Sn. Hence, the plasticity of MgZn2 phase is the best. The calculated Young's moduli of Mg2Sn phase has the largest value and MgZn2 phase has the smallest value. Hence, among the three phases Mg2Sn phase has the strongest stiffness. The ratio of the shear moduli to bulk moduli of phase can be used to demonstrate the brittle and ductile of materials. The critical value, which separates ductility from brittleness, is about 0.57. A higher G/Bu value is associated withbrittleness, otherwise is ductility. The calculated values of Mg2Sn, Mg2Ca and MgZn2 phases are 0.66, 0.53 and 0.18, respectively. The results show that Mg2Sn is brittle, Mg2Ca and MgZn2 are both ductile.

Key words:  magnesium alloy      first-principles calculation      structural stability      electronic structure      elastic property     
Received:  13 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00266     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1227

[1] Yang H Y, Guo X W, Wu G H, Wang S H, Ding W J. Surf Coat Technol, 2011; 205: 2907

[2] Liu Z, Zhang K, Zeng X Q. Magnesium-Based Light-Alloy Theoretical Basis and the Application.Beijing: Mechanical Industry Press, 2002: 1
(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用. 北京: 机械工业出版社, 2002: 1)
[3] Song W, Wu Z G, He Y H, Huang B Y. Chin J Nonferrous Met, 2008; 18: 1971
(宋旼, 吴正刚, 贺跃辉, 黄伯云. 中国有色金属学报, 2008; 18: 1971)
[4] Zhou D W, Xu S H, Zhang F Q, Peng P, Liu J S. Acta Metall Sin, 2010; 46: 97
(周惦武, 徐少华, 张福全, 彭平, 刘金水. 金属学报, 2010; 46: 97)
[5] ЛякишевH П, translated by Guo Q W. Metal Binary System Manual. Beijing: Chemical Industry Press,2009: 914
(梁基谢夫 著, 郭青蔚译. 金属二元系相图手册. 北京:化学工业出版社, 2009: 914)
[6] Gao X, Nie J F. Scr Mater, 2007; 57: 655
[7] Zeng X Q, Zhang Y, Lu C, Ding W J, Wang Y X, Zhu Y P. J Alloys Compd, 2005; 395: 213
[8] Qin B, Yu W B, Li F P, Li C M. Foundry, 2010; 59: 886
(秦兵, 于文斌, 李坊平, 李春梅. 铸造, 2010; 59: 886)
[9] Li S H, Zhang C X, Guan S K, Wen C L, Tian H T, Yu W W, Meng H. J Mater Sci Eng, 2012; 30: 563
(李少华, 张春香, 关绍康, 文春领, 田海棠, 于雯雯, 孟辉. 材料科学与工程学报, 2012; 30: 563)
[10] Zhang B P, Wang Y, Geng L, Lu C X. Mater Sci Eng, 2012; A39: 56
[11] Tong L B, Zheng M Y, Hua X S, Wu K, Xu S W, Kamado S, Kojima Y. Mater Sci Eng, 2010; A527: 4250
[12] Geng L, Zhang B P, Li A B, Dong C C. Mater Lett, 2009; 63: 557
[13] Cheng L. Master Thesis, Chongqing University of technlolgy, 2011
(程亮. 重庆理工大学硕士学位论文, 2011)
[14] Xiang Q, Wu R Z, Zhang M L. J Alloys Compd, 2009; 477: 832
[15] Nayyeri G, Mahmudi R, Salehi F. Mater Sci Eng, 2010; A527: 5353
[16] Pan X Q, Chen J H, Yan H G, Su B, Wei J Y, Fan C. Mater Sci Technol, 2013; 29: 169
[17] Wang P, Li J P, Guo Y C, Yang Z, Xia F, Wang J L. Rare Met Mater Eng, 2012; 41: 2095
(王萍, 李建平, 郭永春, 杨忠, 夏峰, 王建利. 稀有金属材料与工程, 2012; 41: 2095)
[18] Liu Z, Zhang Y, Mao P L, Yang C H. Spec Cast Nonferrous Alloys, 2012; 32: 1000
(刘正, 张越, 毛萍莉, 杨春海. 特种铸造及有色合金, 2012; 32: 1000)
[19] Shi D M, Wen B, Melnik R, Yao S, Li T J. J Solid State Chem, 2009; 82: 2664
[20] Pack J D, Monkhors H J. Phys Rev, 1977; 16B: 1748
[21] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[22] Fagan S B, Mota R, Baierle R J, Paiva G, Da Silva A J R, Fazzio A. J Mol Struct, 2001; 539: 101
[23] Zhang H, Shang S L, Saal J E, Saengdeejing A, Wang Y, Chen L Q, Liu Z K. Intermetallics, 2009; 17: 878
[24] Groseh G H, Range K J. J Alloys Compd, 1996; 235: 250
[25] Suzuki A, Saddock N D, Jomes J W, Pollock T M. Acta Mater, 2005; 53: 2823
[26] Yu W Y. Master Thesis, Xiangtan University, 2009
(余伟阳. 湘潭大学硕士学位论文, 2009)
[27] Huang K. Solid State Physics. Beijing: Higher Education Press, 1985: 68
(黄昆. 固体物理学. 北京:高等教育出社, 1985: 68)
[28] Li C H, Hoe J L, Wu P. J Phys Chem Solids, 2003; 64: 201
[29] Sahu B R. Mater Sci Eng, 1997; B49: 74
[30] Lin W, Xu J H, Freeman A J. Phys Rev, 1992; 45B: 10863
[31] Huang Z W, Zhao Y H, Hou H, Han P D. Physica, 2012; 407B: 1075
[32] Yu W Y, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400
[33] Nye J F. Physical Properties of Crystals. Oxford: Clarendon Press, 1964: 1
[34] Davis L C, Whitten W B, Danielson G C. J Phys Chem Solids, 1967; 28: 439
[35] Corkill J L, Cohen M L. Phys Rev, 1993; 48B: 17138
[36] Seidenkranz T, Hegenbarth E. Phys Status Solidi, 1976; 33A: 205
[37] Li Y F, Gao Y M, Xiao B, Min T, Fan Z J, Ma S Q, Xu L L. J Alloys Compd, 2010; 502: 28
[38] Hill R. Phys Soc Sect, 1952; 65A: 349
[39] Hong S, Fu C L. Intermetallics, 1999; 7: 5
[40] Pugh S F. Philos Mag, 1954; 45: 823
[41] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[42] Fu C L, Wang X D, Ye Y Y. Intermetallics, 1999; 7: 179
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[8] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[10] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[11] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[12] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[15] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
No Suggested Reading articles found!