Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 441-449    DOI: 10.3724/SP.J.1037.2011.00633
论文 Current Issue | Archive | Adv Search |
EFFECTS OF COOLING PROCESS ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND PRECIPITATION BEHAVIORS OF NIOBIUM-TITANIUM MICRO-ALLOYED STEEL
CHEN Jun, TANG Shuai, LIU Zhenyu, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

CHEN Jun, TANG Shuai, LIU Zhenyu, WANG Guodong. EFFECTS OF COOLING PROCESS ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND PRECIPITATION BEHAVIORS OF NIOBIUM-TITANIUM MICRO-ALLOYED STEEL. Acta Metall Sin, 2012, 48(4): 441-449.

Download:  PDF(1115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The tested steels were cooled to room temperature using different cooling paths after two-stage rolling, and effects of cooling paths on microstructure, mechanical properties and precipitation behaviors of Nb-Ti micro-alloyed steels were investigated. The results show the hot rolled plates with fine grain were produced at the cooling path of ultra fast cooling + air cooling, and the average grain size, lower yield strength and ultimate tensile strength are about 7.76 μm, 425 MPa and 500 MPa, respectively. The fine precipitation particles ranging from 2 nm to 7 nm were observed in the samples cooling with ultra fast cooling + furnace cooling, but are only a few globular precipitates in the samples cooling with ultra fast cooling + air cooling. The inter-phase precipitation was observed in samples cooling with air cooling after finish rolling. These plates with different cooling paths were annealed at 700 ℃ for 300 s. The precipitation particles were obviously coarsened during annealing. It can be found that the average grain size of the samples with cooling path of ultra fast cooling + furnace cooling is 6.47 μm and the increments of lower yield strength and ultimate tensile strength are about 50 and 30 MPa, respectively. The strength increment mainly depends on fine grain strengthening.For niobium-titanium micro-alloyed steels containing 0.03%Nb (mass fraction), because the volume fraction of precipitates is limited, grain boundaries strengthening is higher than precipitation hardening, making changes of strength be in good agreement with that of grain size. In addition, the strain hardening exponent is mainly related to average grain size, and strain hardening exponent increases with average grain size increasing.
Key words:  niobium-titanium micro-alloyed steel      ultra fast cooling      cooling path      microstructure and mechanical property      precipitation hardening      fine grain strengthening      strain hardening exponent     
Received:  09 October 2011     
ZTFLH: 

TG142.33

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00633     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/441

[1] Yong Q L.  Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 15

    (雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 15)

[2] Duan X G, Cai Q W, Wu H B.  Acta Metall Sin, 2011; 47: 251

    (段修刚, 蔡庆伍, 武会斌. 金属学报, 2011; 47: 251)

[3] Fang S F, Zhang J.  Acta Metall Sin, 1990; 26: A228

    (方淑芳, 张健. 金属学报, 1990; 26: A228)

[4] Tang G Y, Zheng Y Z, Cai Q G, Zhu J.  Acta Metall Sin,1989; 25: A414

    (唐国翌, 郑炀曾, 蔡其巩, 朱静. 金属学报, 1989; 25: A414)

[5] Zrnika J, Kvackaj T, Pongpaybul A, Sricharoenchai P, Vilk J,Vrchovinsky V.  Mater Sci Eng, 2001; A319: 321

[6] Xue X H, Shan Y Y, Zheng L, Lou S N.  Mater Sci Eng,2006; A438: 285

[7] Mesplont C.  Proc 1th International Conf on Super-High Strength Steels, Rome, Italy: AIM, 2005 (CD-ROM)

[8] Jiao D T, Cai Q W, Wu H B.  Acta Metall Sin, 2009; 45: 1111

    (焦多田, 蔡庆伍, 武会斌. 金属学报, 2009; 45: 1111)

[9] Arribas M, Lopez B, Rodriguez-Ibabe J M.  Mater Sci Eng,2008; A485: 383

[10] Dutta B, Sellars C M.  Mater Sci Technol, 1987; 3: 197

[11] Liu W J, Jonas J J.  Metall Trans, 1989; 20A: 689

[12] Abad R, Fernandez A I, Lopez B, Podriguez-Ibabe J M.  ISIJ Int,2001; 41: 1373

[13] Yu Q B, Wang Z D, Liu X H, Wang G D.  Mater Sci Eng, 2004; A379: 384

[14] Wu J B, Liu G Q, Wang H.  Acta Metall Sin, 2010; 46: 838

     (吴晋彬, 刘国权, 王浩. 金属学报, 2010, 46: 838)

[15] Fu L M, Shan A D, Wang W.  Acta Metall Sin, 2010; 46: 832

     (付立铭, 单爱党, 王巍. 金属学报, 2010, 46: 832)

[16] Bai D Q, Yue S, Sun W P, Jonas J J.  Metall Trans, 1993; 24A: 2151

[17] Maruyama N, Uemori R, Sugiyama M.  Mater Sci Eng, 1998; A250: 2

[18] Koch C C, Morris D G, Lu K, Inoue A.  MRS Bull, 1999; 24: 54

[19] Tsuji N, Ito Y, Saito Y, Minamino Y.  Scr Mater, 2002; 47: 893

[20] Song R, Ponge D, Raabe D.  Acta Mater, 2003; 53: 4881

[21] Cao J C.  PhD Thesis, Kunming University of Science and Technology, 2006

     (曹建春. 昆明理工大学博士学位论文, 2006)

[22] Wang Z D, Qu J B, Liu X H, Wang G D.  Acta Metall Sin, 2000; 36: 618

     (王昭东, 曲锦波, 刘相华, 王国栋. 金属学报, 2000, 36: 618)

[23] Akben M G, Bacroix B, Jonas J J.  Acta Metall, 1983; 31: 161

[24] Altuna M A, Lza-Mendia A, Gutierrez I.  3rd International Conf on Thermomechanical Proc Steels, Padova, Italy: Milano: AIM, 2008 (CD-ROM)

[25] Davenport A, Honeycombe R.  Proc Roy Soc London, 1971; 322: 191

[26] Lagneborg R, Zajac S.  Metall Mater Trans, 2001; 32A: 39

[27] Andrews K W.  Iron Steel Inst, 1965; 203: 721
[1] Ke ZHANG,Qilong YONG,Xinjun SUN,Zhaodong LI,Peilin ZHAO. EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(5): 529-537.
[2] Qin SHEN,Xiaojiao WANG,Anyu ZHAO,Yifeng HE,Xulei FANG,Jiarong MA,Wenqing LIU. EFFECTS OF Mn ON MULTI-PRECIPITATES EVOLUTION OF Cu-RICH AND NiAl PHASE IN STEELS[J]. 金属学报, 2016, 52(5): 513-518.
[3] WANG Bin, LIU Zhenyu, Feng Jie, ZHOU Xiaoguang, WANG Guodong. PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING[J]. 金属学报, 2014, 50(6): 652-658.
[4] QIN Fei, XIANG Min, WU Wei. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION[J]. 金属学报, 2014, 50(6): 722-726.
[5] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[6] WANG Zhen LIU Xuefeng XIE Jianxin. MICROSTRUCTURE AND MECHANICAL PROPERTIES EVOLUTIONS OF CONTINUOUS COLUMNAR-GRAINED CuAlNi ALLOY WIRES DURING DIELESS DRAWING PROCESS[J]. 金属学报, 2012, 48(7): 867-874.
[7] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL[J]. 金属学报, 2012, 48(4): 435-440.
[8] WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL[J]. 金属学报, 2012, 48(10): 1201-1206.
[9] SONG Renbo ZHANG Yongkun WEN Xinli JIA Yisu. HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B[J]. 金属学报, 2011, 47(1): 34-40.
[10] TIAN Ni ZHAO Gang ZUO Liang LIU Chunming. STUDY ON THE STRAIN HARDENING BEHAVIOR OF Al-Mg-Si-Cu ALLOY SHEET FOR AUTOMOTIVE BODY[J]. 金属学报, 2010, 46(5): 613-617.
[11] MO Defeng HE Guoqiu HU Zhengfei LIU Xiaoshan ZHANG Weihua. EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY[J]. 金属学报, 2010, 46(2): 184-188.
[12] WANG Shuhan LIU Zhenyu WANG Guodong. INFLUENCE OF GRAIN SIZE ON TWIP EFFECT IN A TWIP STEEL[J]. 金属学报, 2009, 45(9): 1083-1090.
[13] CUI Hang CHEN Huaining CHEN Jing HUANG Chunling WU Changzhong. FEA OF EVALUATING MATERIAL YIELD STRENGTH AND STRAIN HARDENING EXPONENT USING A SPHERICAL INDENTATION[J]. 金属学报, 2009, 45(2): 189-194.
[14] LIU Jiangtao;WANG Zhongguang;SHANG Jianku. DEFORMATION BEHAVIORS OF [110] AND [112] ORIENTED β-Sn SINGLE CRYSTALS[J]. 金属学报, 2008, 44(12): 1409-1414.
[15] LIU Zhiguo;CHEN Yong;CAO Yanni;ZHU Zhengsheng Nanjing University Shanxi Iron and Steel Institute; Xi'an professor;Department of Physics;Nanjing University;Nanjing 210008. PRECIPITATION HARDENING OF ELINVAR ALLOY[J]. 金属学报, 1990, 26(4): 40-44.
No Suggested Reading articles found!