|
|
3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V |
YANG Mei 1, WANG Gang 2, TENG Chunyu 1,3,4, XU Dongsheng 1, ZHANG Jian 5, YANG Rui 1, WANG Yunzhi 3 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
3. The Ohio State University, Columbus OH 43210, USA
4. College of Science, Northeastern University, Shenyang 110819
5. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article:
YANG Mei WANG Gang TENG Chunyu XU Dongsheng ZHANG Jian YANG Rui WANG Yunzhi . 3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V. Acta Metall Sin, 2012, 48(2): 148-158.
|
Abstract The effect of interface energy anisotropy on the sideplate growth in Ti–6Al–4V is studied using 3D quantitative phase field method. The dynamic and thermodynamic data come from the DICTRA and Thermo–Calc databases, respectively. The results show that the interface anisotropy is an important factor controlling the shape of plates. Larger interface energy anisotropy results in wider plates and thicker residual β phase. Statistics of plate width, thickness and inter–platelet β phase thickness show that the evolutions of the width to thickness ratio of sideplate are different for systems with different interface energy anisotropy ratios. Solute concentrations are found inhomogeneous in the β phase near α/β interface (Al–poor and V–rich). The stronger the interface energy anisotropy is, the greater of the inhomogeneity. Higher temperatures result in slower growth, forming wider and thicker plates.
|
Received: 16 May 2011
|
Fund: Supported by National Basic Research Program of China (No.2011CB606404) and CAS Informationization Project (No.INFO–115–B01) |
[1] Sastry S M L, Meschter P J, Oneal J E. Metall Mater Trans, 1984; 15A: 1451[2] Greenfie M A, Margolin H. Metall Trans, 1972; 3: 2649[3] Weiss I, Froes F H, Eylon D, Welsch G E. Metall Trans, 1986; 17A: 1935[4] Shell E, Semiatin S. Metall Mater Trans, 1999; 30A: 3219[5] Stefansson N, Semiatin S L, Eylon D. Metall Mater Trans, 2002; 33A: 3527[6] Stefansson N, Semiatin S L. Metall Mater Trans, 2003; 34A: 691[7] Yoder G R, Cooley L A, Crooker T W. Metall Mater Trans, 1977; 8A: 1737[8] Yoder G R, Cooley L A, Crooker T W. Eng Fract Mech, 1979; 11: 805[9] Lindigkeit J, Terlinde G, Gysler A, Lutjering G. Acta Metall, 1979; 27: 1717[10] Carter R D, Lee E W, Starke E A, Beevers C J. Metall Mater Trans, 1984; 15A: 555[11] Suresh S. Metall Mater Trans, 1985; 16A: 249[12] Hall I W, Hammond C. Mater Sci Eng, 1978; 32: 241[13] Ravichandran K S. Acta Metall Mater, 1991; 39: 401[14] Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O. Mech Mater, 2004; 36: 161[15] Ma Y J. PhD Thesis, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2009(马英杰. 中国科学院金属研究所博士学位论文, 沈阳, 2009)[16] Liu J R. Post–doctoral Research Report, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2011(刘建荣.中国科学院金属研究所博士后出站报告, 沈阳, 2011)[17] Filip R, Kubiak K, ZiajaW, Sieniawski J. J Mater Process Technol, 2003; 133: 84[18] Li S K, Xiong B Q, Hui S X, Ye W J, Yu Y. Mater Sci Eng, 2007; A460: 140[19] Semiatin S L, Bieler T R. Acta Mater, 2001; 49: 3565[20] Ahmed T, Rack H J. Mater Sci Eng, 1998; A243: 206[21] Banerjee R, Bhattacharyya D, Collins P C, Viswanathan G B, Fraser H L. Acta Mater, 2004; 52: 377[22] Bhattacharyya D, Viswanathan G B, Fraser H L. Acta Mater, 2007; 55: 6765[23] Krahe P R, Aaronson H I, Kinsman K R. Acta Metall, 1972; 20: 1109[24] Zener C. Trans AIME, 1946; 167: 550[25] Kirkaldy J S. Scand J Metall, 1991; 20: 50[26] Aaronson H I, Furuhara T, Enomoto M. Scand J Metall, 1991; 20: 18[27] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323[28] Loginova I, Agren J, Amberg G. Acta Mater, 2004; 52: 4055[29] Ma N. PhD Thesis, The Ohio State University, 2005[30] Wang Y, Ma N, Chen Q, Zhang F, Chen S L, Chang Y A. JOM, 2005; 57: 32[31] Ma N, Yang F, Shen C,Wang G, Viswanathan G B, Collins P C, Xu D S, Yang R, Fraser H L,Wang Y Z. In: NinomiM ed., Ti–2007 Science and Technology, Sendai: the JapanInstitute of Metals, 2007: 287[32] Wang G, Xu D S, Yang R. Acta Phys Sin, 2009; 58(Spec): S343(王刚, 徐东生, 杨锐. 物理学报, 2009; 58: S343)[33] Chen Q, Ma N, Wu K S, Wang Y Z. Scr Mater, 2004; 50: 471[34] Mills M J, Hou D H, Suri S, Viswanathan G B. In: Pond R C ed., Boundaries and Interfaces in Materials: The David A. Smith Symposium, Warrendale: Minerals, Metals& Materials Soc, 1998: 295 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|