Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 148-158    DOI: 10.3724/SP.J.1037.2011.00308
论文 Current Issue | Archive | Adv Search |
3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V
YANG Mei 1, WANG Gang 2, TENG Chunyu 1,3,4, XU Dongsheng 1, ZHANG Jian 5, YANG Rui 1, WANG Yunzhi 3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
3. The Ohio State University, Columbus OH 43210, USA
4. College of Science, Northeastern University, Shenyang 110819
5. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190
Cite this article: 

YANG Mei WANG Gang TENG Chunyu XU Dongsheng ZHANG Jian YANG Rui WANG Yunzhi . 3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V. Acta Metall Sin, 2012, 48(2): 148-158.

Download:  PDF(1235KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of interface energy anisotropy on the sideplate growth in Ti–6Al–4V is studied using 3D quantitative phase field method. The dynamic and thermodynamic data come from the DICTRA and Thermo–Calc databases, respectively. The results show that the interface anisotropy is an important factor controlling the shape of plates. Larger interface energy anisotropy results in wider plates and thicker residual β phase. Statistics of plate width, thickness and inter–platelet β phase thickness show that the evolutions of the width to thickness ratio of sideplate are different for systems with different interface energy anisotropy ratios. Solute concentrations are found inhomogeneous in the β phase near α/β interface (Al–poor and V–rich). The stronger the interface energy anisotropy is, the greater of the inhomogeneity. Higher temperatures result in slower growth, forming wider and thicker plates.
Key words:  phase field      Ti–6Al–4V      interface energy anisotropy      α–lamella      solute field     
Received:  16 May 2011     
Fund: 

Supported by National Basic Research Program of China (No.2011CB606404) and CAS Informationization Project (No.INFO–115–B01)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00308     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/148

[1] Sastry S M L, Meschter P J, Oneal J E. Metall Mater Trans, 1984; 15A: 1451

[2] Greenfie M A, Margolin H. Metall Trans, 1972; 3: 2649

[3] Weiss I, Froes F H, Eylon D, Welsch G E. Metall Trans, 1986; 17A: 1935

[4] Shell E, Semiatin S. Metall Mater Trans, 1999; 30A: 3219

[5] Stefansson N, Semiatin S L, Eylon D. Metall Mater Trans, 2002; 33A: 3527

[6] Stefansson N, Semiatin S L. Metall Mater Trans, 2003; 34A: 691

[7] Yoder G R, Cooley L A, Crooker T W. Metall Mater Trans, 1977; 8A: 1737

[8] Yoder G R, Cooley L A, Crooker T W. Eng Fract Mech, 1979; 11: 805

[9] Lindigkeit J, Terlinde G, Gysler A, Lutjering G. Acta Metall, 1979; 27: 1717

[10] Carter R D, Lee E W, Starke E A, Beevers C J. Metall Mater Trans, 1984; 15A: 555

[11] Suresh S. Metall Mater Trans, 1985; 16A: 249

[12] Hall I W, Hammond C. Mater Sci Eng, 1978; 32: 241

[13] Ravichandran K S. Acta Metall Mater, 1991; 39: 401

[14] Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O. Mech Mater, 2004; 36: 161

[15] Ma Y J. PhD Thesis, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2009

(马英杰. 中国科学院金属研究所博士学位论文, 沈阳, 2009)

[16] Liu J R. Post–doctoral Research Report, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2011

(刘建荣.中国科学院金属研究所博士后出站报告, 沈阳, 2011)

[17] Filip R, Kubiak K, ZiajaW, Sieniawski J. J Mater Process Technol, 2003; 133: 84

[18] Li S K, Xiong B Q, Hui S X, Ye W J, Yu Y. Mater Sci Eng, 2007; A460: 140

[19] Semiatin S L, Bieler T R. Acta Mater, 2001; 49: 3565

[20] Ahmed T, Rack H J. Mater Sci Eng, 1998; A243: 206

[21] Banerjee R, Bhattacharyya D, Collins P C, Viswanathan G B, Fraser H L. Acta Mater, 2004; 52: 377

[22] Bhattacharyya D, Viswanathan G B, Fraser H L. Acta Mater, 2007; 55: 6765

[23] Krahe P R, Aaronson H I, Kinsman K R. Acta Metall, 1972; 20: 1109

[24] Zener C. Trans AIME, 1946; 167: 550

[25] Kirkaldy J S. Scand J Metall, 1991; 20: 50

[26] Aaronson H I, Furuhara T, Enomoto M. Scand J Metall, 1991; 20: 18

[27] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323

[28] Loginova I, Agren J, Amberg G. Acta Mater, 2004; 52: 4055

[29] Ma N. PhD Thesis, The Ohio State University, 2005

[30] Wang Y, Ma N, Chen Q, Zhang F, Chen S L, Chang Y A. JOM, 2005; 57: 32

[31] Ma N, Yang F, Shen C,Wang G, Viswanathan G B, Collins P C, Xu D S, Yang R, Fraser H L,Wang Y Z. In: NinomiM ed., Ti–2007 Science and Technology, Sendai: the Japan

Institute of Metals, 2007: 287

[32] Wang G, Xu D S, Yang R. Acta Phys Sin, 2009; 58(Spec): S343

(王刚, 徐东生, 杨锐. 物理学报, 2009; 58: S343)

[33] Chen Q, Ma N, Wu K S, Wang Y Z. Scr Mater, 2004; 50: 471

[34] Mills M J, Hou D H, Suri S, Viswanathan G B. In: Pond R C ed., Boundaries and Interfaces in Materials: The David A. Smith Symposium, Warrendale: Minerals, Metals

& Materials Soc, 1998: 295
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[3] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[5] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[6] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[7] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[8] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[9] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
[10] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
[11] Jinhu ZHANG,Dongsheng XU,Yunzhi WANG,Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 905-915.
[12] Yanli LU,Guangming LU,Tingting HU,Tao YANG,Zheng CHEN. PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT[J]. 金属学报, 2015, 51(7): 866-872.
[13] KE Changbo, ZHOU Minbo, ZHANG Xinping. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2014, 50(3): 294-304.
[14] ZHAO Yan, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. A PHASE FIELD STUDY FOR SCALING RULES OF GRAIN COARSENING IN POLYCRYSTALLINE SYSTEM CONTAINING SECOND-PHASE PARTICLES[J]. 金属学报, 2013, 49(8): 981-988.
[15] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
No Suggested Reading articles found!