Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 294-304    DOI: 10.3724/SP.J.1037.2013.00415
Current Issue | Archive | Adv Search |
PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM
KE Changbo1,2(), ZHOU Minbo2, ZHANG Xinping2
1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

KE Changbo, ZHOU Minbo, ZHANG Xinping. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM. Acta Metall Sin, 2014, 50(3): 294-304.

Download:  HTML  PDF(10923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the continuous pursuit of miniaturization, multifunction and high-reliability of electronic products and devices, the packing density has been increasing and the dimension of solder joints has been scaling down. In electronic packaging, during the soldering process being employed to Sn-based solders, an intermetallic compound (IMC) layer is formed between molten solder and pad (or under bump metallization, UBM), whose morphology and thickness as well as growth kinetics play an important role in controlling the service performance of the solder joints, in particular for solder interconnects with the decreasing size where the interfacial IMC layer takes up a high volume fraction in the solder joint. Thus, characterizing the morphology change and growth kinetics of interfacial IMC layer is very important to optimize the soldering process and evaluate the reliability of solder interconnects. In this study, a multi-phase-field model is applied to intensively account for the effect of grain boundary diffusion coefficient ( D G B ) and IMC/liquid interfacial energy σ ηL on the morphology evolution and and growth kinetics of IMC. The simulation results show that Cu6Sn5 grains grow up and contact with each other exhibiting a scallop-like morphology which can be influenced by both the grain boundary diffusion coefficient and IMC/liquid interfacial energy. The IMC growth process exhibits three stages, including the initial stage associated with Cu6Sn5 grain broadening followed by the transition stage characterized by scallop shape formation and the last normal growth stage dominated by IMC layer thickening and concurrent Cu6Sn5 grain coarsening. It is also found that the IMC layer thickness increases with grain boundary diffusion coefficient but decreases with IMC/liquid interfacial energy, while the scallop average width decreases with grain boundary diffusion coefficient and increases with IMC/liquid interfacial energy. The relationships between IMC layer thickness/width and reaction time can be well fitted by an exponential growth law, in which the large grain boundary diffusion coefficient combined with σ G B = 2 σ ηL (where σ GB is the grain boundary energy) can produce precise growth exponent closing to that in the ideal solid-liquid interface reaction.

Key words:  intermetallic compound      growth kinetics      morphological evolution      interfacial reaction      phase field simulation     
Received:  16 July 2013     
ZTFLH:  TG113  
Fund: Supported by National Natural Science Foundation of China (Nos.51275178 and 51205135) and Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110172110003) and Fundamental Research Funds for the Central Universities (No.2013ZM0026)
About author:  null

柯常波, 男, 1981 年生, 博士

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00415     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/294

Fig.1  

模拟计算采用的二维区域示意图

Table 1  Material parameters used in the simulation
Fig.2  

IMC二维和三维形貌随时间的演化过程

Fig.3  

IMC morphologies with different grain boundary diffusion coefficients (t=8 s)

(a) DGB =2.0×103Dη (b) DGB =2.0×102 Dη (c) DGB = Dη

Fig.4  Curves of IMC layer thickness (a) and average width of Cu6Sn5 scallop-type grains (b) vs time for different grain boundary diffusion coefficients
Fig.5  Exponential curves fitting for IMC layer thickness vs time during normal growth stage for different grain boundary diffusion coefficients
D G B IMC layer thickness Scallop average width
K T n T R2 KW nW R2
2.0×103Dη 35.44 0.35 0.998 23.16 0.32 0.997
2.0×102Dη 28.80 0.37 0.997 25.54 0.27 0.991
Dη 22.52 0.40 0.991 16.27 0.48 0.989
Table 2  Exponential fitting results of variations of IMC layer thickness and average width of Cu6Sn5 scallop-type grains with time during normal growth stage for different grain boundary diffusion coefficients
Fig.6  Microstructure of IMC layer with different levels of η / L interfacial energy σ η L (t=6 s) (a) σ η L =0.08 J/m2 (b) σ η L =0.15 J/m2 (c) σ η L =0.24 J/m2 (d) the energy balance relationship in triple junction point ( θ is the semi-dihedral angle)
Fig.7  Curves of IMC layer thickness (a) and average width of Cu6Sn5 scallop-type grains (b) vs time for different levels of interfacial energy (DGB=2.0×103Dη)
σηL/ J/m2 IMC layer thickness Average width of Cu6Sn5 grain
K T n T R2 KW nW R2
0.24 25.76 0.36 0.994 26.32 0.19 0.998
0.15 35.44 0.35 0.998 23.16 0.32 0.997
0.08 36.83 0.42 0.997 27.76 0.23 0.998
Table 3  Exponential fitting results of variations of IMC layer thickness and average width of Cu6Sn5 scalloptype grains with time during normal growth stage for different levels of η / L interfacial energy
[1] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[2] Yin L M, Yang Y, Liu L Q, Zhang X P. Acta Metall Sin, 2009; 45:422
(尹立孟, 杨 艳, 刘亮岐, 张新平. 金属学报, 2009; 45: 422)
[3] Zhou M B, Ma X, Zhang X P. J Mater Sci Mater Electron, 2012; 23: 1543
[4] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[5] Zuruzi A S, Chiu C H, Lahiri S K, Tu K N. J Appl Phys, 1999; 86: 4916
[6] Deng X, Piotrowski G, Williams J J, Chawla N. J Electron Mater, 2003; 32: 1403
[7] Shen J, Chan Y C, Liu S Y. Acta Mater, 2009; 57: 5196
[8] Ma D, Wang W D, Lahiri S K. J Appl Phys, 2002; 91: 3312
[9] Chen J, Shen J, Lai S Q, Min D, Wang X C. J Alloys Compd, 2010; 489: 631
[10] Li J F, Agyakwa P A, Johnson C M. Acta Mater, 2010; 58: 3429
[11] Kim H K, Liou H K, Tu K N. Appl Phys Lett, 1995; 66: 2337
[12] Gorlich J, Schmitz G, Tu K N. Appl Phys Lett, 2005; 86: 053106-1
[13] Shin C K, Baik Y J, Huh J Y. J Electron Mater, 2001; 30: 1323
[14] Choi S, Lucas J P, Subramanian K N, Bieler T R. J Mater Sci, 2000; 11: 497
[15] Cho M G, Kim H Y, Seo S K, Lee H M. Appl Phys Lett, 2009; 95: 021905-1
[16] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Acta Mater, 2008; 56: 4291
[17] Chen J K, Beraun J E, Tzou D Y. J Mater Sci, 1999; 34: 6183
[18] Erickson K L, Hopkins P L, Vianco P T. J Electron Mater, 1998; 27: 117
[19] Huh J Y, Hong K K, Kim Y B, Kim K T. J Electron Mater, 2004; 33: 1161
[20] Hong K K, Huh J Y. J Electron Mater, 2006; 35: 56
[21] Park M S, Arroyave R. Acta Mater, 2010; 58: 4900
[22] Kim S G, Kim W T, Suzuki T, Ode M. J Cryst Growth, 2004; 261: 135
[23] Shim J H, Oh C S, Lee B J, Lee D N. Z Metallkd, 1996; 87: 1
[24] Kim S G, Kim W T, Suzuki T. Phys Rev, 1999; 60E: 7186
[25] Xu G S,Zeng J B,Zhou M B,Cao S S,Ma X,Zhang X P. In: Bi K Y, Yang D G, Cai M eds., Proceedings of the 12th International Conference on Electronic Packaging Technology & High Density Packaging, Piscataway, NJ: IEEE Press, 2012: 289
[26] Zhou M B, Ma X, Zhang X P. Acta Metall Sin, 2013; 3: 341
(周敏波, 马 骁, 张新平. 金属学报, 2013; 3 : 341)
[27] Ma X, Wang F J, Qian Y Y, Yoshida F. Mater Lett, 2003; 57: 3361
[28] Yu D Q, Wang L. J Alloys Compd, 2008; 458: 542
[29] Gosh G. J Appl Phys, 2000; 88: 6887
[30] Suh J O, Tu K N, Lutsenko G V, Gusal A M. Acta Mater, 2008; 56: 1075
[31] Gusak A M, Tu K N. Phys Rev, 2002; 66B: 115403-1
[32] Kim S H, Lee H J, Yu Y S, Won Y S. Acta Mater, 2009; 57: 1254
[33] Laudise R A, Carruthers J R, Jackson K A. Annu Rev Mater Sci, 1971; 1: 253
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[4] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[5] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[8] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[9] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[10] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[11] Huadong YAN,Hui JIN. Three-Dimensional Characteristics and Morphological Evolution of Micro/Meso Pores inG20Mn5N Steel Castings[J]. 金属学报, 2019, 55(3): 341-348.
[12] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[13] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[14] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[15] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
No Suggested Reading articles found!