Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1474-1478    DOI: 10.3724/SP.J.1037.2012.00362
Current Issue | Archive | Adv Search |
Cu–Y2O3 COMPOSITES PREPARED BY LIQUID PHASE IN SITU REACTION
ZHUO Haiou, TANG Jiancheng, YE Nan
Institute of Materials Science and Engineering, Nanchang University, Nanchang 330031
Cite this article: 

ZHUO Haiou TANG Jiancheng YE Nan. Cu–Y2O3 COMPOSITES PREPARED BY LIQUID PHASE IN SITU REACTION. Acta Metall Sin, 2012, 48(12): 1474-1478.

Download:  PDF(890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A growing trend to use new oxide dispersion strengthened (ODS) copper–based composites is observed recently world–wide. Yttria (Y2O3 ) and most rare earth oxides are potentially attractive as dispersiods for copper–based composites owing to their thermodynamic stability. Cu–0.9Y2O3  (volume fraction, %) composites were prepared with Cu–0.4Y (mass fraction, %) alloy by in situ reaction at liquidus temperature. The objective of the work was to investigatechanges in structure and strengthening mechanism of Cu–Y2O composites. TEM observation and SAD analysis of the composites indicate that the obtained Y2O3  nano–particles are uniformly distributed in copper matrix, their mean size and space between particles are 5.0 nm and 20 nm, respectively, and the cubic Y2O phase is coherent with copper matrix, which indicated (422)Y2O3//(111)Cu and [011]Y2O3//[112]Cu orientation relationship. The strengthening mechanism of the composites is analyzed and explained in three aspects: matrix strengthening, fine particles strengthening according to the Orowan model and shear model. The tensile strength of Cu–0.9Y2O3 composites is 568 MPa, which is strengthened by both Orowan mechanism and shear mechanism, the strength value added by Orowan mechanism and shear mechanism can be calculated to be 185 and 195 MPa, respectively.

Key words:  liquid phase in situ reaction      Cu–Y2O3 composite      coherent relationship      strengthening mechanism     
Received:  19 June 2012     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50801037, 51071082 and 51271090), Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0730), New Century Excellent Talents in University (No.NCET–10–0184) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20103601110001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00362     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1474

[1] Zhang S L, Yin Z M. Mater Rev, 2003; 17: 26

(张生龙, 尹志民. 材料导报, 2003; 17: 26)

[2] Li Z Y, Shen J, Cao F Y, Li Q C. J Mater Process Technol, 2003; 35: 60

[3] Liu P, Kang B X, Cao X G, Hang J L, Gu H C. Acta Metall Sin, 1999; 35: 561

(刘平, 康布熙, 曹兴国, 黄金亮, 顾海澄. 金属学报, 1999; 35: 561)

[4] Li Q, Ma B, Li L, Hang G J, Chen C L, Xie S S. Rare Met Mater Eng, 2011; 40(suppl): 132

(李 强, 马彪, 李雷, 黄国杰, 陈春玲, 谢水生. 稀有金属材料与工程, 2011; 40(增刊): 132)

[5] Yan P, Lin C G, Cui S, Lu Y J, Zhou Z L, Li Z D. J Wuhan Univ Technol, 2011; 26: 902

[6] Shen Y T, Cui C X, Meng F B, Wu R J. Acta Metall Sin, 1999; 35: 888

(申玉田, 崔春翔, 孟凡斌, 吴人洁. 金属学报, 1999; 35: 888)

[7] Tian B H, Liu P, Song K X, Li Y, Liu Y, Ren F Z, Su J H. Mater Sci Eng, 2006; A435–436: 750

[8] Nagorka M S, Levi C G, Lucas G E, Ridder S D. Mater Sci Eng, 1991; A142: 277

[9] Chakrabarti D J, Laughlin D E. In: Massalski T B ed., Binary Alloy Phase Diagrams. Ohio: American Society for Metals, 1986: 977

[10] Engels J M, Gasgnier M, Blaise G. J Alloys Compd, 1998; 267: 294

[11] Hu H Q. Metal Solidification Principle. Beijing: China Machine Press, 1981: 110

(胡汉起 著. 金属凝固原理. 北京: 机械工业出版社, 1981: 110)

[12] Ribis J, Carlan Y. Acta Mater, 2012; 60: 238

[13] Ribis J, Lozano–Perez S. Mater Lett, 2012; 74: 143

[14] Hirsch P, Howie A, Nicholson R B, Pashley D W. Translated by Liu A S, Li Y H. Electron Microscopy of Thin Crystals. Beijing: Science Press, 1983: 355


(Hirsch P, Howie A, Nicholson R B, Pashley D W著, 刘安生, 李永洪 \ 译. 薄晶体电子显微学. 北京: 科学出版社, 1983: 355)

[15] Wang Y, Sun F, Dong X P, Zhang L T, Shan A D. Acta Metall Sin, 2010; 46: 334

(王衣, 孙锋, 董显平, 张澜庭, 单爱党. 金属学报, 2010; 46: 334)

[16] Stobrawa J P, Rdzawski Z M. Arch Mater Sci Eng, 2008; 30: 17

[17] Toualbi L, Ratti M, Andr´e G, Onimus F, Carlan Y. J Nucl Mater, 2011; 417: 225

[18] Cheng J Y, Yu F X, Ao X W. Adv Mater, 2011; 189–193: 70

[19] Nagorka M S, Lucas G E, Levi C G. Metall Mater Trans, 1995; 26A: 873

[20] Lee J, Jung J Y, Lee E, Park W J, Ahn S, Kim N J. Mater Sci Eng, 2000; A277: 274

[21] Zhu A W, Chen J, Starke JR E A. Acta Mater, 2000; 48: 2239

[22] Guo S H, Zhang M, Peng G Y, Tang J C. Adv Mater, 2011; 194–196: 1301

[23] Gerold V, Haberkorn H. Phys Status Solidi, 1966; 16B: 675

[24] Holzwarth U, Stamm H. J Nucl Mater, 2000; 279: 31

[25] Ardell A J. Metall Mater Trans, 1985; 16A: 2131

[26] Yong M, Ardell A J. Acta Mater, 2007; 55: 4419

[27] Datta A, Soffa W A. Acta Mater, 1976; 24: 987
[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[2] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[4] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[6] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[7] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[8] XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. 金属学报, 2020, 56(12): 1581-1591.
[9] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[10] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[11] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
[12] Yajun HUI,Hui PAN,Na ZHOU,Ruiheng LI,Wenyuan LI,Kun LIU. STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL[J]. 金属学报, 2015, 51(12): 1481-1488.
[13] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
[14] LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY[J]. 金属学报, 2014, 50(10): 1244-1252.
[15] . CHARACTERIZATIONS OF DLC/MAO COMPOSITE COATINGS ON AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2011, 47(12): 1535-1540.
No Suggested Reading articles found!