Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 853-858    DOI: 10.3724/SP.J.1037.2011.00197
论文 Current Issue | Archive | Adv Search |
STUDY OF CARBIDE PRECIPITATION AT GRAIN BOUNDARY IN NICKEL BASE ALLOY 690
LI Hui, XIA Shuang, ZHOU Bangxin, PENG Jianchao
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

LI Hui XIA Shuang ZHOU Bangxin PENG Jianchao. STUDY OF CARBIDE PRECIPITATION AT GRAIN BOUNDARY IN NICKEL BASE ALLOY 690. Acta Metall Sin, 2011, 47(7): 853-858.

Download:  PDF(1084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The morphology and orientation relationship between carbide precipitated at grain boundary and both side matrixes in nickel base alloy 690 aged at 715 ℃ for 2-200 h after solution treated were investigated by HRTEM, SEM and EBSD. The results show that the boundary carbide is easy to nucleate in the grain with high indexed crystal plane parallel to boundary, and the carbide has coherent orientation relationship (COR) with this grain. The carbide grows preferentially into the grain without COR between carbide and grain, which leads to lower chromium concentration in this side matrix near boundary. The asymmetry of chromium concentration profile leads to the different corrosion resistance of the two side grains nearby the grain boundary.
Key words:  Ni base alloy 690      grain boundary      carbide      chromium depletion zone     
Received:  02 April 2011     
ZTFLH: 

TG113.1

 
Fund: 

Supported by National Basic Research Program of China (Nos.2006CB605001 and 2011CB610502), National Natural Science Foundation of China (No.50974148) and Innovation
Fund of Shanghai University

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00197     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/853

[1] Diercks D R, Shack W J, Muscar J. J Nucl Eng Des, 1999; 194: 19

[2] Kai J J, Yu G P, Tsai C H, Liu M N, Yao S C. Metall Trans, 1989; 20A: 2057

[3] Stiller K, Nilsson J O, Kjell N. Metall Trans, 1996; 27A: 327

[4] Murr L E, Advani A, Shankar S, Atteridge D G. Mater Charact, 1990; 24: 135

[5] Povich M J. Corrosion, 1978; 34: 60

[6] Li Q, Zhou B X. Acta Metall Sin, 2001; 37: 8

(李强, 周邦新. 金属学报, 2001; 37: 8)

[7] Lim Y S, Kim J S, Kim H P, Cho H D. J Nucl Mater, 2004; 335: 108

[8] Wilson F G. J Iron Steel Inst, 1971; 209: 126

[9] Trillo E A, Murr L E. J Mater Sci, 1998; 33: 1263

[10] Carolan R A, Faulkner R G. Acta Metall, 1988; 36: 257

[11] Li H, Xia S, Zhou B X, Chen W J, Ni J S. Acta Metall Sin, 2009; 45: 195

(李慧, 夏爽, 周邦新, 陈文觉, 倪建森. 金属学报, 2009; 45: 195)

[12] Trillo E A, Murr L E. Acta Mater, 1999; 47: 235

[13] Li H, Xia S, Zhou B X, Chen W J, Hu C L. J Nucl Mater, 2010; 399; 108

[14] Hong H U, Rho B S, Nam S W. Mater Sci Eng, 2001; A318: 285

[15] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019

[16] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990

[17] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016

[18] Palumbo G, Aust K T, Lehockey E M. Scr Mater, 1998; 38: 1685

[19] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501

[20] Randle V, Coleman M, Waterton M. Metall Mater Trans, 2011; 42A: 582

[21] Gokon N, Kajihara M. Mater Sci Eng, 2008; A477: 121

[22] Lewis M H, Hattersley B. Acta Metall, 1965; 13: 1159

[23] Hall E L, Briant C L. Metall Trans, 1984; 15A: 793

[24] Downey S, Kalu P N, Han K. Mater Sci Eng, 2008; A480: 96

[25] Wolff U E. Trans AIME, 1968; 242: 814

[26] Li H, Xia S, Zhou B X, Liu W Q. Mater Charact, revised

[27] McLean D. Grain Boundaries in Metals. London: Oxford University Press, 1957: 67
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[9] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[10] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[12] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[13] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[14] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[15] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
No Suggested Reading articles found!