Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1503-1512    DOI: 10.3724/SP.J.1037.2011.00194
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
FENG Mingjie, WANG Engang, HE Jicheng
Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819
Cite this article: 

FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method. Acta Metall Sin, 2011, 47(12): 1503-1512.

Download:  PDF(964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of pouring temperature and casting speed on temperature field in high speed steel composite roll billet under copper mold and the selection of optimistic continuous casting technique parameters were studied by use of numerical simulation method based on Fluent 6.3 software. At the same time, the pouring billets experiment was also executed based on the simulation results. The results indicate that the casting speed and pouring temperature are the most important parameters to determine that a high speed steel composite roll billet can be well poured or not and the quality of interface of bimetal composite is better or not. Increases in pouring temperature and casting speed are conducive to metallurgical bond between the two metals, but their moreincreasing will make the depth of melting zone increase, the thickness of solidifying shell decrease and the feasibility of breakout increase. The simulated appropriate pulling temperature and casting speed are about 1873—1923 K and 0.3—0.5 m/min, respectively, which are proved by experiment results.
Key words:  high speed steel composite roll      continuous pouring process for cladding      temperature field      interface of bimetal composite     
Received:  02 April 2011     
Fund: 

Supported by National High Technology Research and Development Programme of China (No.2003AA331050) and National Natural Science Foundation of China (No.200809123)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00194     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1503

[1] Walmag G, Skoczynski R J, Breyer J P. La Revue Metall–CIT, 2001; 98: 295

[2] Kunio G, yukio A. ISIJ Int, 1992; 32: 1131

[3] Sano Y, Thattori T, Haga M. ISIJ Int, 1992; 32: 1194

[4] Ichino K, Kataoka Y, Koseki T. Kawasaki Steel Technol Rep, 1997; 37(8): 13

[5] Feng M J, Wang E G, Wang J G, He J C. China Metall, 2006; 16(10): 14

(冯明杰, 王恩刚, 王俊刚, 赫冀成. 中国冶金, 2006; 16(10): 14)

[6] Feng M J, Wang E G, He J C. Acta Metall Sin, 2011; 47: 1495

(冯明杰, 王恩刚, 赫冀成. 金属学报, 2011; 47: 1495)

[7] Gan Y, Qiu S T, Xiao Z Q. Maths and Physics Simulation on Continuous Casting Steel. Beijing: Metallurgy Industry Press, 2001: 1

(干勇, 仇圣桃, 萧泽强. 连续铸钢过程数学物理模拟. 北京: 冶金工业出版社,2001: 1)

[8] Fu H G, Xing J D. Steel Res Int, 2007; 78: 266

[9] Lino G D, Rodolfo D M. Steel Res, 2001; 72: 346

[10] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 1465

(于海岐, 朱苗勇. 金属学报, 2008; 44: 1465)

[11] Lei J M, Song W P, Cui X C. Chin J Mech Eng, 2001; 37(7): 74

(雷建民, 宋卫平, 崔小朝. 机械工程学报, 2001; 37(7): 74)

[12] Jin B G, Wang Q, Liu Y. Chin J Nonferrous Met, 2006; 16: 1931

(金百刚, 王强, 刘燕. 中国有色金属学报, 2006; 16: 1931)

[13] Meng X N, Zhun M Y, Liu X D. Acta Matell Sin, 2007; 43: 205

(孟祥宁, 朱苗勇, 刘旭东. 金属学报, 2007; 43: 205)

[14] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 619

(于海岐, 朱苗勇. 金属学报, 2008; 44: 619)

[15] Ren B Z, Zhu M Y, Wang H D. Acta Metall Sin, 2008; 44: 507

(任兵芝, 朱苗勇, 王宏丹. 金属学报, 2008; 44: 507)

[16] Xia X J, Wang H M, Dai Q X, Li G R, Zhao Y T. Chin J Nonferrous Met, 2008; 18: 529

(夏小江, 王宏明, 戴起勋, 李桂荣, 赵玉涛. 中国有色金属学报, 2008; 18: 529)

[17] Feng M J, Wang E G, Deng A Y, He J C. J Northeast Univ (Nat Sci), 2006; 27: 665

(冯明杰, 王恩刚, 邓安元, 赫冀成. 东北大学学报(自然科学版), 2006; 27: 665)
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[4] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[6] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[7] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[8] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[9] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[10] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[11] Qiaodan Hu; Peng Luo; Jianguo Li. FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE[J]. 金属学报, 2008, 44(10): 1253-1259 .
[12] . Numerical Simulation of two-phase Solidification Process of[J]. 金属学报, 2007, 43(6): 668-672 .
[13] XiaoSong Feng. TEMPERATURE FILED SIMULATION OF LASER BRAZING FOR GALVANIZED STEEL SHEETS[J]. 金属学报, 2006, 42(8): 882-886 .
[14] . Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)[J]. 金属学报, 2006, 42(5): 449-453 .
[15] . NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING[J]. 金属学报, 2006, 42(3): 311-316 .
No Suggested Reading articles found!