Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1495-1502    DOI: 10.3724/SP.J.1037.2011.00149
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method
FENG Mingjie, WANG Engang, HE Jicheng
Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819
Cite this article: 

FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method. Acta Metall Sin, 2011, 47(12): 1495-1502.

Download:  PDF(776KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of original preheating temperature of core, casting speed, preheating power and supplement heat power on unsteady state temperature field in high speed steel composite roll billet and the parameters match relationship during graphite mould continuous pouring process for cladding have been numerically simulated by use of interface and user–defined functions based on Ansys 10.0 and Fluent 6.3 software. The results indicate that the required induced preheating power increases with increasing casting speed and decreasing original preheating temperature of core when the finishing preheating temperature of core–surface is constant. The higher temperature zone only lies in the surface layer of core and the temperature in mostly zone of core is not affected by inducing coil when the core moves off the preheating coil. The highest temperature of core–surface and duration above its solidus increase with increasing supplement heating power and decreasing casting speed. When the casting speed matched with supplement heat power, the high speed steel can tightly bond with core to form the composite roll.
Key words:  high speed steel composite roll      temperature field      continuous pouring process for cladding      metallurgy bounding     
Received:  22 March 2011     
Fund: 

Supported by National High Technology Research and Development Programme of China (No.2003AA331050) and National Natural Science Foundation of China (No.200809123)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00149     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1495

[1] Kang Y J, Oh J C, Lee H C, Xiao Q Y, Shao K Z. Metall Mater Trans, 2001; 32A: 2515

[2] Twadoh S, Mori T. ISIJ Int, 1992; 32: 1131

[3] Kudo T, Kawashima S, Kurahashi R. ISIJ Int, 1992; 32: 1190

[4] Ichino K, Kataaoka Y, Koseki T. Kawasaki Steel Technol Rep, 1997; 37(8): 13

[5] Hashimoto M, Otomo S, Yoshida K, Hokimoto K, Oda T. ISIJ Int, 1992; 32: 1202

[6] Shimizu M, Shitamura O, Matsuo S. ISIJ Int, 1992; 32: 1244

[7] Fu H G. Iron Steel, 2000; 35(5): 67

(符寒光. 钢铁, 2000; 35(5): 67)

[8] Zhou L, He J A. Foundry, 2002; 51: 666

(周利, 何奖爱. 铸造, 2002; 51: 666)

[9] Gong K L. Steel Roll, 2008; 25(2): 39

(宫开令. 轧钢, 2008; 25(2): 39)

[10] Shao K Z, Wei S Z, Long R, Liu Y M, Wang S C. Foundry, 2006; 55: 160

(邵抗振, 魏世忠, 龙锐, 刘亚民, 王守城. 铸造, 2006; 55: 160)

[11] Wu C J, Shen D Z, Yang G M, Jia T C, Huang Y X. Iron Steel, 1999; 34(4): 61

(吴春京, 沈定钊, 杨国明, 贾天聪, 黄永溪. 钢铁, 1999; 34(4): 61)

[12] Zhou L Y, Chen B Q, Du X M, Wang H. Spec Cast Nonferrous Alloys, 2009; 29: 621

(周利阳, 陈冰泉, 杜学铭, 万虹. 特种铸造及有色合金, 2009; 29: 621)

[13] Feng M J, Wang E G, Wang J G, He J C. Northeast Univ (Nat Sci), 2007; 28: 1401

(冯明杰, 王恩刚, 王俊刚, 赫冀成. 东北大学学报(自然科学版), 2007; 28: 1401)

[14] Han Z C. Electromagnetic Technique and Equipment of Metallurgy. Beijing: Metallurgical Industry Press, 2008: 19

(韩至成. 电磁冶金技术及装备. 北京: 冶金工业出版社, 2008: 19)
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[4] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[6] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[7] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[8] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[9] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[10] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[11] Qiaodan Hu; Peng Luo; Jianguo Li. FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE[J]. 金属学报, 2008, 44(10): 1253-1259 .
[12] . Numerical Simulation of two-phase Solidification Process of[J]. 金属学报, 2007, 43(6): 668-672 .
[13] XiaoSong Feng. TEMPERATURE FILED SIMULATION OF LASER BRAZING FOR GALVANIZED STEEL SHEETS[J]. 金属学报, 2006, 42(8): 882-886 .
[14] . Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)[J]. 金属学报, 2006, 42(5): 449-453 .
[15] . NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING[J]. 金属学报, 2006, 42(3): 311-316 .
No Suggested Reading articles found!