Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 91-96    DOI:
论文 Current Issue | Archive | Adv Search |
VISCOELASTIC-PLASTIC ANALYSIS OF BROADENING OF SLAB IN THE SECONDARY COOLING ZONE OF CONTINUOUS CASTING
FU Jianxun1;2); LI Jingshe1); ZHANG Hui2)
1) School of Metallurgical and Ecological Engineering; University of Science and Technology Beijing; Beijing 100083
2) National Engineering Research Center of Continuous Casting Technology; China Iron $\&$ Steel Research Institute Group; Beijing 100081
Cite this article: 

FU Jianxun LI Jingshe ZHANG Hui. VISCOELASTIC-PLASTIC ANALYSIS OF BROADENING OF SLAB IN THE SECONDARY COOLING ZONE OF CONTINUOUS CASTING. Acta Metall Sin, 2010, 46(1): 91-96.

Download:  PDF(992KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 3D viscoelastic-plastic thermal-mechanically coupled finite element model was established by a commercial software MSC.Marc on the basis of secondary development, and used to simulate the situation of slab's broadening in the secondary cooling zone. The results showed that the slab's broadening mainly emerged in the former segments of the secondary cooling zone, and the broadening rate has a gradually increasing trend from the first segment to the sixth segment. The broadening of slab has a close relationship with bulging along the thickness direction. The results simulated by using viscoelastic-plastic model revealed that the law of the slab's broadening is excellent agreement with the actual deformation. The broadening of slab is the result of viscoelastic-plastic deformation of the slab shell under the pressure of core of molten steel.

Key words:  continuous casting      slab      secondary cooling zone      broadening      thermal-mechanical couple      viscoelastic-plasticity     
Received:  20 July 2009     
ZTFLH: 

TF777.7

 
Fund: 

Supported by Key Projects in the National Science & Technology Pillar Program During the Eleventh Five-Year Plan of China (No.2006BAE03A04)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/91

[1] Yoshii A, Kihara S. Trans ISIJ, 1986; 26: 891
[2] Maeno S, Wada K, Itoh Y, Nagano Y. Trans ISIJ, 1983; 24: 83
[3] Siyasiya C, van Rooyen G T. Stumpf W E. J South Afr Inst Mining Metall, 2005; 105: 473
[4] Lin Q Y, Zhu M Y. Acta Metall Sin, 2007; 43: 1301
(林启勇, 朱苗勇. 金属学报, 2007; 43: 1301)
[5] Chen Z P, Cheng N L, Cui L X, Zhang J Q. Iron Steel, 2004; 39(suppl): 457
(陈志平, 程乃良, 崔立新, 张家泉. 钢铁, 2004; 39(增刊): 457
[6] Fu J X. PhD Thesis, University of Science and Technology Beijing, 2009

(付建勋. 北京科技大学博士学位论文, 2009)
[7] Kim K H, Yeo T J, Oh K H, Lee D N. ISIJ Int, 1996; 36: 284
[8] Grill A, Schwerdtfeger K. Ironmak Steelmak, 1979; 6: 131
[9] Barber B, Lewis B A, Leckenby B M. Ironmak Steelmak, 1985; 12: 171
[10] Okamura K, Kawashima H. ISIJ Int, 1989; 29: 666
[11] Sorimachi K, Brimacombe J K. Ironmak Steelmak, 1977; 4: 240
[12] Wang X C. Finite Element Method. Beijing: Tsinghua University Press, 2003: 125
(王勖成. 有限单元法. 北京: 清华大学出版社, 2003: 125)

[13] Fu J X, Li J S, Wang C L, Zhu J T. Mater Rev, 2009; 23(9): 68
(付建勋, 李京社, 汪春雷, 朱经涛. 材料导报, 2009; 29(9): 68)
[14] Uehara M, Samarasekera I V, Brimacombe J K. Iro nmak Steelmak, 1986; 13: 138
[15] Chen S Q. PhD Thesis, Central Iron and Steel Research Institute, Beijing, 2004

(陈素琼. 钢铁研究总院博士学位论文, 北京, 2004)

[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[3] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[5] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[7] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[8] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[9] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[10] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[11] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[12] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[13] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[14] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!