Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1111-1115     DOI:
Research Articles Current Issue | Archive | Adv Search |
Driving Force for the Nucleation from Supercooled Liquid and Thermodynamic Analysis of Glass Forming Ability for Binary Alloys
Na Wang;;Zhenmin Du
北京科技大学
Cite this article: 

Na Wang; Zhenmin Du. Driving Force for the Nucleation from Supercooled Liquid and Thermodynamic Analysis of Glass Forming Ability for Binary Alloys. Acta Metall Sin, 2008, 44(9): 1111-1115 .

Download:  PDF(2468KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Using CALPHAD technique and the reported thermodynamic parameters, the driving forces for the formations of all crystalline phases from supercooled liquid states were analyzed, and the composition ranges with low crystalline abilities but high glass forming abilities(GFA) are estimated thermodynamically for glass forming systems. The typical glass forming binary systems, Cu-Zr, Nb-Ni and Pd-Si, were selected and investigated, in which the eutectic depths of the equilibrium phase diagrams are visibly different. The compositional dependency of GFA was predicted in each alloy system, the best glass formers are obtained and are compared with the eutectic points and the experimental results. The present estimation can explain the experimental best formers for the bulk amorphous systems satisfactorily.
Key words:  Supercooled liquid alloys      Driving Force for the Nucleation      Glass Forming Ability      Thermodynamic Analy     
Received:  14 January 2008     
ZTFLH:  TG111.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1111

[1]Inoue A,Zhang T,Masumoto T.Mater Trans JIM,1990; 31:177
[2]Peker A,Johnson W L.Appl Phys Left,1993;63:2342
[3]Inoue A,Takeuchi A.Mater Sci Eng,2004;A375-377:16
[4]Inoue A.Acta Mater,2000;48:279
[5]Turnbull D.Contemp Phys,1969;10:473
[6]Inoue A,Zhang T,Masumoto T.J Non Cryst Solids, 1993;156-158:473
[7]Lu Z P,Liu C T.Acta Mater,2002;50:3501
[8]Kaufman L.In:Sundman B,ed.,Proc Calphad XXXI, Stockholm,Sweden:Royal Institute of Technology,2002: 28
[9]Abe T,Shimono M,Ode M,Onodera H.J Alloys Compd, 2007;434-435:152
[10]Kim D,Lee B-J,Kim N J.Intermetallics,2004;12:1103
[11]Shao G,Lu B,Liu Y Q,Tsakiropoulos P.Intermetallics, 2005;13:409
[12]Xia L,Fang S S,Wang Q,Dong Y D.Appl Phys Lett, 2006;88:171905
[13]Porter D A,Easterling K E.Phase Transformations in Metals and Alloys.New York:Van Nostrand Reinhold Co.Ltd.,1981
[14]Kim D,Lee B J,Kim N J.Scr Mater,2005;52:969
[15]Gorsse S,Orveillon G,Senkov O N,Miracle D B.Phys Rev,2006;73B:224202
[16]Sundman B,Jansson S,Anderson J O.Calphad,1985;9: 153
[17]Wang N,Li C,Du Z,Wang F,Zhang W.Calphad,2006; 30:461
[18]Joubert J-M,Sundman B,Dupin N.Calphad,2004;28: 299
[19]Du Z,Guo C,Yang X,Liu T.Interrnetallics,2006;14: 56O
[20]Xu D,Lohwongwatana B,Duan G,Johnson W L,Garland C.Acta Mater,2004;52:2621
[21]Wang D,Li Y,Sun B B,Sui M L,Lu K,Ma E.Appl Phys Lett,2004;84:4029
[22]Wang W H,Lewandowski J J,Greer A L.J Mater Res, 2005;20:2307
[23]Tang M-B,Zhao D Q,Pan M-X,Wang W H.Chin Phys Lett,2004;21:901
[24]Kwon O-J,Lee Y-K,Park S O,Lee J-C,Kim Y C, Fleury E.Mater Sci Eng,2007;A449 451:169
[25]Zhu Z W,Zhang H F,Pan D G,Sun W S,Hu Z Q.Adv Eng Mater,2006;8:953
[26]Xia L,Shan S T,Ding D,Dong Y D.Intermetallics,2007; 15:1046
[27]Chen H S,Turnbull D.Acta Metall,1969;17:1021
[28]Yao K-F,Ruan F.Chin Phys Lett,2005;22:1481
[29]Duwez P,Willems R H,Crewdson R C.J Appl Phys,1965; 36:2267
[1] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[2] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[3] Chao PENG, Yuan LI, Yonghe DENG, Ping PENG. Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions[J]. 金属学报, 2017, 53(12): 1659-1668.
[4] Manjiao CHEN,Jiankang HUANG,Cuicui HE,Yu SHI,Ding FAN. THERMODYNAMIC ANALYSIS OF THE FORMATION OF Fe-Al-Zn INTERMETALLIC COMPOUNDS IN Al/GALVANIZED STEEL INTERFACE[J]. 金属学报, 2016, 52(1): 113-119.
[5] WANG Xiaoliang LI Changrong GUO Cuiping DU Zhenmin HE Wei. PRECIPITATION BEHAVIOR OF GP ZONES DURING AGEING PROCESS OF Mg-Zn ALLOY[J]. 金属学报, 2010, 46(5): 575-580.
[6] SUN Yajuan WEI Xianshun HUANG Yongjiang SHEN Jun. EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY[J]. 金属学报, 2009, 45(2): 243-248.
[7] Pan Dong; Jia Zhang; Xinchun Chang; Wanliang Hou; Minxiu Quan; Jianqiang Wang. AMORPHOUS PHASE FORMATION AND MICROSTRUCTURE CHARACTERIZATION IN THE Al-RICH REGION OF Al-Co-Y SYSTEM[J]. 金属学报, 2008, 44(2): 227-232 .
[8] HE Lin. Effect of Oxygen on the Thermal Stability of Zr-Cu-Ni-Al-Ti Bulk Amorphous Alloy[J]. 金属学报, 2006, 42(2): 134-138 .
[9] LI Jinfu;YANG Gencang;ZHOU Yaohe (Stste Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072). GRAIN REFINEMENT IN UNDERCOOLED Ni-50%Cu ALLOY[J]. 金属学报, 1998, 34(2): 113-118.
[10] TONG Hingcun;SHEN Ningfu(Zhengzhou Instiiute of Technology)LIU Baicheng(Tsinghua University)(Manuscript received 17 September;1993). FORMATION AND DISTRIBUTION OF TiC PHASE IN RAPIDLY QUENCHED Al-3.18Ti-0.65C ALLOY[J]. 金属学报, 1994, 30(4): 155-159.
[11] LU Ke Institute of Metal Research; Academia Sinica; Shenyang 110015. STRUCTURE AND GLASS FORMING ABILITY (GFA) OF AMORPHOUS ALLOYS[J]. 金属学报, 1992, 28(1): 67-76.
No Suggested Reading articles found!