Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (5): 636-640     DOI:
Research Articles Current Issue | Archive | Adv Search |
MICROHARDNESS INVESTIGATION OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINT
XU Ze-Jian;
西北工业大学航空学院
Cite this article: 

XU Ze-Jian. MICROHARDNESS INVESTIGATION OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINT. Acta Metall Sin, 2008, 44(5): 636-640 .

Download:  PDF(908KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Vicker’s microhardness tester equipped with diamond pyramid indenter was used to carry out microhardness tests on 0Cr18Ni10Ti stainless steel welded joint. Indentaion size effects (ISE) of different regions at the joint, including the weld metal (WM), base metal (BM), fusion zone (FZ) and heat-affected zone (HAZ) were studied at loads varying from 10 to 500 g for a constant dwell time of 10 s. The results show that the microhardness for each region of the welded joint decreases with the increasing load at comparatively low loads, and then tends to invariable as the indentation load exceeds 200 g. The PSR model was adopted to accurately describe the variation of the hardness as a function of indentation test load. The error between the tested hardness at 200 g of applied load and the calculated value using this model is less than 3%. Indentation tests were also successively performed across the welded joint to evaluate the distribution of the microhardness for different regions of the welded joint and optical microstructures are observed and analyzed. The yield stress distribution of the welded joint was also calculated according to its relationship with the hardness.
Key words:  0Cr18Ni10Ti stainless steel      welded joint      heat-affected zone      microhardness      indentation size effect      
Received:  22 October 2007     
ZTFLH:  TG407  
  TG115.51  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I5/636

[1]Xu Z J,Li Y L,Liu M S,Li P Z,Wu Y G.Acta Metall Sin,2008;44:98 (许泽建,李玉龙,刘明爽,李朋洲,吴云刚.金属学报,2008;44:981
[2]Ade F.Weld J,1991;70:53
[3]Grough I G.Met Forum,1988;12:31
[4]Chen T H,Yang J R.Mater Sci Eng,2002;A338:166
[5]Zou M L,Zou Y X,Du C X,Sun D C,Chen H M.Founda- tion of Welding Theory and Technology.Beijing:Beijing University of Aeronautics & Astronautics Press,1994:168 (邹茉莲,邹一心,杜诚修,孙德超,陈焕明.焊接理论及工艺基础.北京:北京航空航天大学出版社,1994:168)
[6]Bamzai K K,Kotru P N,Wanklyn B M.Appl Surf Sci, 1998;133:195
[7]Sahin O,Uzun O,Kolemen U,Ucar N.Mater Charact, 2007;58:197
[8]Gong J H,Miao H Z,Zhao Z,Guan Z.Mater Sci Eng, 2001;A303:179
[9]Xu Z J,Li Y L.Acta Metall Sin (Engl Lett),in press
[10]Ascheron C,Haase C,Kuhn G,Neumann H.Cryst Res Technol,1989;24:K33
[11]Kick F.Das Gesetz der Proportionalen Widerstanden und Seine Anwendung,Leipzig:Felix,1885
[12]Bamzai K K,Kotru P N,Wanklyn B M.Cryst Res Tech- nol,1996;31:813
[13]Kumari P N S,Kalainathan S,Raj N A N.Mater Lett, 2008;62:305
[14]Vangatesan B,Kanniah N,Ramaswamy P.J Mater Sci Lett,1986;5:987
[15]Bhatt V P,Patel R M,Desai C F.Cryst Res Technol, 1983;18:9
[16]Dhar P R,Bamzai K,Kotru P N.Cryst Res Technol,1997; 32:535
[17]Li H,Bradt R C.J Mater Sci,1993;28:917
[18]Quinn J B,Quinn G D.J Mater Sci,1997;32:4331
[19]Sahin O,Uzun O,KSlemen U,Diizgiin B,U.car N.Chin Phys Lett,2005;22:3137
[20]Hays C,Kendall E G.Metallography,1973;6:275
[21]Bektes M,Uzun O,Aktiirk S,Ekinci A E,U.car N.Chin J Phys,2004;42:733
[22]Pal T,Kar T.Mater Sci Eng,2003;A354:331
[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[4] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[5] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[6] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[7] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[8] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[9] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[10] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[11] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[12] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[13] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[14] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[15] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
No Suggested Reading articles found!