|
|
DEFORMATION BEHAVIORS OF [110] AND [112] ORIENTED β-Sn SINGLE CRYSTALS |
LIU Jiangtao1;WANG Zhongguang1;SHANG Jianku2 |
1.Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110016
2.Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana IL61801; USA |
|
Cite this article:
LIU Jiangtao;WANG Zhongguang;SHANG Jianku. DEFORMATION BEHAVIORS OF [110] AND [112] ORIENTED β-Sn SINGLE CRYSTALS. Acta Metall Sin, 2008, 44(12): 1409-1414.
|
Abstract Deformation behaviors of [110] and [112] oriented Sn single crystals were investigated under different temperatures and strain rates. It is shown that there are some differences between [110] and [112] orientations. [110] oriented sample has the higher strain rate sensitivity exponent m≈0.133, strain hardening exponent n≈0.54, activation energy Q≈35 kJ/mol and deforms through multiple--slip. While [112] oriented sample has the lower strain rate sensitivity exponent m≈0.108, lower strain hardening exponent n≈0.46, activation energy Q≈52 kJ/mol and deforms through cross-slip and twins together. The first activated slip system is {010}<100>in [110] orientation. The critical-resolved shear stress (CRSS) is 3.1 MPa which is depended on temperature. Deformation process is controlled by the cross--slip according to the activation energy and slip observation.
|
Received: 14 January 2008
|
|
[1]Qian C F.X-ray Crystallographic.Shenyang:Northeast- ern University Press,2003:190 (钱存富.X射线晶体学.沈阳:东北大学出版社,2003:190) [2]Honda K,Hirokawa T.Jpn J Appl Phys,1972;11:1763 [3]Schmid E,Haase 0.Z Phys,1925;33:413 [4]Schmid E,Obinata J.Z Phys,1933;82:224 [5]Bausch K.Z Phys,1935;93:479 [6]Fiedler R,Vagera I.Phys Status Solidi,1975;32A:419 [7]Weertman J.J Appl Phys,1957;28:196 [8]Weertman J,Breen J E.J Appl Phys,1956;27:1189 [9]Honda K.Jpn J Appl Phys,1979;18:215 [10]Honda K.Jpn J Appl Phys,1979;18:1455 [11]Honda K.Jpn J Appl Phys,1987;26:637 [12]Honda K.Jpn J Appl Phys,1988;27:1599 [13]Honda K.Jpn J Appl Phys,1988;27:1604 [14]Honda K.Jpn J Appl Phys,1988;27:2232 [15]Honda K,Hirokawa T.Jpn J Appl Phys,1971;10:1489 [16]Hollomon J H.Trans AIME,1945;162:268 [17]Plumbridge W J.J Mater Sci,1996;31:501 [18]Roylance D.Phys Today,1996;49:56 [19]Lange W,Bergner D.Phys Status Solidi,1962;2:1410 [20]Pokier J P.Acta Metall,1978;26:629 [21]Sherby O D,Weertman J.Acta Metall,1979;27:387 [22]Evans H E,Knowles G.Acta Metall,1977;25:963 [23]Nagasaka M.Jpn J Appl Phys,1989;28:446 [24]Ojima K,Hirokawa T.Jpn J Appl Phys,1983;22:46 [25]Shi R X,Yang R C,Zhou C H,Yin Y S,Ma L P.J Shah- dong Univ,2004;34(5):5 (师瑞霞,杨瑞成,周春华,尹衍升,马来鹏.山东大学学报,2004;34(5):5) [26]Conrad H.JOM,1964;16:582 [27]Feng D.Metal Physics.Beijing:Science Press,1987:421 (冯端.金属物理学.北京:科学出版社,1987:421) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|