Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 498-502     DOI:
Research Articles Current Issue | Archive | Adv Search |
Fatigue Property of Ultrafine-grained Copper Produced by ECAP
西安交通大学;西安建筑科技大学4#
Cite this article: 

. Fatigue Property of Ultrafine-grained Copper Produced by ECAP. Acta Metall Sin, 2007, 43(5): 498-502 .

Download:  PDF(255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The fatigue life and cyclic deformation behavior of UFG copper produced by ECAP is studied in this paper. The changes of the grain size and the development of slip bands are observed by means of electron back scattering diffraction and TEM, respectively. The result shows that the fatigue limit of the UFG copper corresponding to 107 cycles is 153MPa. Cyclic softening occurs in the low-cycle fatigue region whereas stable cyclic behavior or even cyclic hardening occurs in the high-cycle region. Persistent slip bands (PSB)-like shear bands (SBs) were approximately parallel to the shearing plane of last pressing. The formation of SBs is the main factor causing crack nucleation as well as premature failure.
Key words:  equal channel angular pressing      ultrafine-grained copper      fatigue limit      shear bands      
Received:  01 August 2006     
ZTFLH:  TG146.1  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/498

[1] Zheng X L. Quantitative Theory of Metal Fatigue. Xi'an: Northwestern Polytechnical University Press, 1994:30 (郑修麟.金属疲劳的定量理论.西安:西北工业大学出版社, 1994:30)
[2] Zhou H J, Huang M Z. Strength Theory of Metal Material. Beijing: Science Press, 1989: 6 (周惠久,黄明志.金属材料强度学.北京:科学出版社,1989: 6)
[3] Vinogradov A, Kaneko Y, Kitagawa K, Hashimoto S, Stol- yarov V, Valiev R. Scr Mater, 1997; 36: 1345
[4] Segal V M, Reznikov V I, Drobyshevskiy A D, Droby- shevskiy A E, Kopylov V I. Izv Russ Metall, 1981; (1): 99
[5] Wang J, Iwahashi Y, Horita Z, Furukawa M, Nemoto M, Valiev R Z, Langdon T G. Acta Mater, 1996; 44: 2973
[6] Alexandrov I V, Zhu Y T, Lowe T C, Islamgaliev R K, Valiev R Z. Nanostruct Mater, 1998; 110: 45
[7] Wu S D, Wang Z G, Jiang C B, Li G Y, Valiev I Z. Mater Sci Eng, 2004; A387-389: 560
[8] Furukawa M, Horita Z, Langdon T G. Mater Sci Eng, 2002; A332: 97
[9] Chinh N Q, Horvath G, Horita Z, Langdon T G. Acta Mater, 2004; 52: 3555
[10] Agnew S R, Vinogradov A Y, Hashimoto S, Weertman J R. J Electron Mater, 1999; 28: 1038
[11] Mughrabi H, Hoppel H W, Kautz M. Scr Mater, 2004, 51: 807
[12] Kunz L, Lukas P, Svoboda M. Mater Sci Eng, 2006; A 424: 97
[13] Goto M, Han S Z, Yakushiji T, Lim C Y, Kim S S. Scr Mater, 2006; 54: 2101
[1] Tingbiao GUO, Qi LI, Chen WANG, Feng ZHANG, Zhi JIA. Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. 金属学报, 2017, 53(8): 991-1000.
[2] Qingsong ZHANG,Zhenyu ZHU,Jiewei GAO,Guangze DAI,Lei XU,Jian FENG. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel[J]. 金属学报, 2017, 53(3): 307-315.
[3] Yu PAN, Diantao ZHANG, Yuning TAN, Zhen LI, Yufeng ZHENG, Li LI. Mechanical Properties of Biomedical Ultrafine Grained Mg-3Sn-0.5Mn Alloy Processed by Equal-Channel Angular Pressing[J]. 金属学报, 2017, 53(10): 1357-1363.
[4] Jixiang CHEN,Weiguo WANG,Yan LIN,Chen LIN,Qianting WANG,Pinqiang DAI. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING[J]. 金属学报, 2016, 52(4): 473-483.
[5] Linna BAI,Fuping LIU,Sui WANG,Feng JIANG,Jun SUN,Liangbin CHEN,WANG,Fengyuan. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD[J]. 金属学报, 2016, 52(1): 41-50.
[6] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[7] ZHANG Yanbin, ZHANG Limin, ZHANG Jiwang, ZENG Jing. EFFECT OF ANODIZING TREATMENT ON BENDING FATIGUE PROPERTIES OF 2014-T6 ALUMINIUM ALLOY[J]. 金属学报, 2014, 50(6): 715-721.
[8] WU Shiding AN Xianghai HAN Weizhong QU Shen ZHANG Zhefeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING[J]. 金属学报, 2010, 46(3): 257-276.
[9] YANG Gang HUANG Chongxiang WU Shiding ZHANG Zhefeng. STRAIN--INDUCED MARTENSITIC TRANSFORMATION IN 304L AUSTENITIC STAINLESS STEEL UNDER ECAP DEFORMATION[J]. 金属学报, 2009, 45(8): 906-911.
[10] ZHANG Jiwang LU Liantao ZHANG Weihua. ANALYSIS ON FATIGUE PROPERTY OF MICROSHOT PEENED MEDIUM CARBON STEEL[J]. 金属学报, 2009, 45(11): 1378-1383.
[11] . High strength and high toughness heat-resistant martensitic steel produced by ECAP[J]. 金属学报, 2008, 44(4): 409-413 .
[12] . Impact properties of Al-Cu alloy subjected to equal channel angular pressing[J]. 金属学报, 2007, 43(12): 1251-1255 .
[13] . EFFECT OF INTERMETALLIC COMPOUNDS ON THE TENSILE PROPERTIES OF Sn-3.8Ag-0.7Cu SOLDER ALLOY[J]. 金属学报, 2007, 42(1): 41-46 .
[14] SHAN Guangbin; WEI Bingchen; LI Jinxu; QIAO Lijie; CHU Wuyang. Effects of Hydrogen on Shear Bands and Cracking in Zr Base Bulk Amorphous Alloy[J]. 金属学报, 2006, 42(7): 689-693 .
[15] . VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL[J]. 金属学报, 2006, 42(3): 259-264 .
No Suggested Reading articles found!