Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (12): 1239-1244     DOI:
Research Articles Current Issue | Archive | Adv Search |
3n special boundary distributions of the cold-rolled and annealed 304 stainless steel
FANG Xiao-Ying
山东理工大学机械工程学院
Cite this article: 

FANG Xiao-Ying. 3n special boundary distributions of the cold-rolled and annealed 304 stainless steel. Acta Metall Sin, 2007, 43(12): 1239-1244 .

Download:  PDF(1123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Grain boundary character distributions (GBCD) of type 304 stainless steel, which was strained by cold rolling and then annealed at 1173K, were analyzed by electron back scatter diffraction (EBSD). The results showed that low strain (~6%) followed by long-time annealing (24h~96h) resulted in a GBCD containing a higher fraction of ∑3n (n=1,2,3) boundaries (special boundaries), in which the connectivity of general high angle grain boundary (HAB) network was interrupted significantly by ∑9 and ∑27 segments. Incoherent and coherent 3 boundaries were identified by single-section trace analysis method, which showed that the major part of 3 boundaries were incoherent ones in the optimized GBCD. Further discussion pointed out that the migration and interaction of incoherent ∑3 boundaries might be the mechanism of twin-induced GBCD optimization.
Key words:  ∑3n boundaries      single-section trace analysis      incoherent ∑3 boundaries      304 stainless steel      
Received:  06 April 2007     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I12/1239

[1]Froment M.J Phys,1975;36:371.
[2]Xian X R,Chou Y T.Philos Mag,1982;45A:1075
[3]Pumphrey P H.In:Chadwick G A,Smith D A eds.,Spe- cial High Angle Boundaries,Grain Boundary Structure and Properties.London:Academic Press,1976:13
[4]Watanabe T.Res Mech,1984:11:47
[5]Lin P,Palumbo G,Erb U,Aust K T.Scr Metall Mater, 1995;33:1387
[6]Pan Y,Adams B L,Olson T.Acta Mater,1996;44:4685
[7]Xia S,Zhou B X,Chen W J.Scr Mater,2006;54:2019
[8]Kumar M,Schwartz A J,King W E.Acta Mater,2002; 50:2599
[9]Xia S,Zhou B X,Chen W J.Acta Metall Sin,2006;42: 129 (夏爽,周邦新,陈文觉.金属学报,2006;42:129)
[10]Wang W G,Zhou B X,Feng L.Acta Metall Sin,2006;42: 715 (王卫国,周邦新,冯柳.金属学报,2006;42:715)
[11]Lee D S,Ryoo H S,Hwang S K.Mater Sci Eng,2003; A354:106
[12]Shimada M,Kokawa H,Wang Z J,Sato Y S,Karibe I. Acta Mater,2002;50:2331
[13]Bi H Y,Kokawa H Z,Wang J,Shimada M,Sato Y S.Scr Mater,2003;49:219
[14]Michiuchi M,Kokawa H,Wang Z J,Sato Y S,Sakai K. Acta Mater,2006;54:5179
[15]Thaveeprungsriporn V,Sinsrok P,Thong-Aram D.Scr Mater,2001;44:67
[16]King W E,Schwartz A J.Scr Mater,1998;38:440
[17]Lee S Y,Chun Y B,Han J W.Mater Sci Eng,2003;A363: 307.
[18]Lehockey E M,Limoges D,Palumbo G.J Power Sources, 1999;78:79
[19]Palumbo G,Erb U.MRS Bull,1999;11:27
[20]Brandon D G.Acta Metall,1966;14:1479
[21]Randle V.Scr Mater,2001;44:2789
[22]Wright S I,Larsen R J.JOM,2002;205:245
[23]Mahajan S,Pande C S,Imam M A,Rath B B.Acta Mater, 1997;45:2633
[24]Randle V.Acta Mater,2004;52:4067
[25]Wang W G,Guo H.Mater Sci Eng,2007;A445:155
[26]Wang W G.Mater Sci Forum,2007;539:3389
[27]Randle V,Davies P,Hulm B.Philos Mag,1999;79A:305
[28]Schuh C A,Kumar M,King W E.J Mater Sci,2005;40: 847
[29]Song K H,Chun Y B,Hwang S K.Mater Sci Eng,2007; A454:629F
[1] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[2] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[3] MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. 金属学报, 2014, 50(9): 1087-1094.
[4] ZHU Chuanlin, ZHANG Junbao, CHENG Congqian, ZHAO Jie. INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL[J]. 金属学报, 2013, 49(10): 1275-1280.
[5] . GRAIN BOUNDARY PLANE DISTRIBUTIONS IN 304 STEEL ANNEALED AT HIGH TEMPERATURE AFTER A PARALLEL PROCESSING OF MULTIPLE FORGING AND DIRECT ROLLING[J]. 金属学报, 2012, 48(8): 895-906.
[6] DU Nan TIAN Wenming ZHAO Qing CHEN Sibing. PITTING CORROSION DYNAMICS AND MECHANISMS OF 304 STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(7): 807-814.
[7] HU Changliang XIA Shuang LI Hui LIU Tingguang ZHOU Bangxin CHEN Wenjue. EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL[J]. 金属学报, 2011, 47(7): 939-945.
[8] CHENG Xiaojuan WANG Hong KANG Guozheng DONG Yawei LIU Yujie. STUDY ON STRAIN--INDUCED MARTENSITE TRANSFORMATION OF 304 STAINLESS STEEL DURING RATCHETING DEFORMATION[J]. 金属学报, 2009, 45(7): 830-834.
[9] Gaofei Liang. IN-SITU OBSERVATION OF δ→γ PHASE TRANSFORMATION OF AN AISI304 STAINLESS STEEL[J]. 金属学报, 2007, 43(2): 119-124 .
[10] Gaofei Liang. IN-SITU OBSERVATION OF NUCLEATION AND GROWTH OF HIGH-TEMPERATURE δ PHASE DURING AUSTENITE → FERRITE+LIQUID PHASE TRANSFORMATION IN AN AISI304 STAINLESS STEEL[J]. 金属学报, 2006, 42(8): 805-809 .
[11] KAN Qianhua; KANG Guozheng; ZHANG Juan; LIU Yujie. EXPERIMENTAL STUDY ON NON-PROPORTIONALLY MULTIAXIAL TIME-DEPENDENT CYCLIC DEFORMATIONS OF SS304 STAINLESS STEEL AT HIGH TEMPERATURE[J]. 金属学报, 2005, 41(9): 963-968 .
[12] KANG Guozheng; SUN Yafang; ZHANG Juan; KAN Qianhua. Time-Dependent Ratcheting Behavior of SS304 Stainless Steel Under Uniaxial Cyclic Loading at Room Temperature[J]. 金属学报, 2005, 41(3): 277-281 .
[13] YANG Xianjie; GAO Qing; CAI Lixun; LIU Yujie. An Experimental Study on the Deformation Behavior of SS304 Stainless Steel UnderNonproportional Cyclic Stress and Strain at Room Temperature[J]. 金属学报, 2004, 40(9): 935-942 .
No Suggested Reading articles found!