Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (10): 1107-1112     DOI:
Research Articles Current Issue | Archive | Adv Search |
PHASE-FIELD SIMULATION OF THE EFFECT OF INTER-PARTICLE DIFFUSIONAL INTERACTION ON PRECIPITATE MORPHOLOGY AND COMPOSITION
ZHANG Yu-Xiang;WANG Jin-cheng;;Gencang Yang;Yaohe Zhou
西北工业大学凝固技术国家重点实验室
Cite this article: 

ZHANG Yu-Xiang; WANG Jin-cheng; Gencang Yang; Yaohe Zhou. PHASE-FIELD SIMULATION OF THE EFFECT OF INTER-PARTICLE DIFFUSIONAL INTERACTION ON PRECIPITATE MORPHOLOGY AND COMPOSITION. Acta Metall Sin, 2007, 43(10): 1107-1112 .

Download:  PDF(443KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  With a reasonable mesh-induced anisotropy, phase-field simulation is performed to investigate the effect of the diffusional interaction between the particles on precipitates morphologies and inside compositions without taking elastic interaction into account. Simulated results show that, precipitate-morphology transition will occur during growth and coarsening of the precipitate due to the interaction. The initially rounded particle may vary in the sequence of: circular square  circular  rhombic  circular, and the composition of precipitate will become inhomogeneous. With increase of the precipitate volume fraction, the influence of the inter-particle diffusional interaction on the precipitate morphology and the composition will become stronger.
Key words:  phase-field method      precipitate      diffusion field      interaction      
Received:  18 January 2007     
ZTFLH:  TG111.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I10/1107

[1]Wang Y Z,Chert L Q,Khachaturyan A G.Scr Metall Mater,1991;25:1387
[2]Wang Y Z,Chen L Q,Khachaturyan A G.Phys Rev,1992; 46B:11194
[3]Wang Y Z,Khachaturyan A G.Acta Metall Mater,1995; 43:1837
[4]Wang Y Z,Chen L Q,Khachaturyan A G.Scr Metall Mater,1991;25:1969
[5]Wang Y Z,Khachaturyan A G.Philos Mag,1995;72A: 1161
[6]Hu S Y,Chen L Q.Acta Mater,2001;49:1879
[7]Hou H,Zhao Y H,Chen Z,Xu H.Acta Metall Sin,2005;41:695 (侯华,赵宇宏,陈铮,徐宏.金属学报,2005;41:695)
[8]Li X L,Chen Z,Liu X G,Liu B.Acta Metall Sin,2002; 38:458 (李晓玲,陈铮,刘晓光,刘兵.金属学报,2002;38:458)
[9]Braun R J,Cahn J W.McFndden G B,Wheeler A A. Philos Trans R Soc London,1997;355A:1787
[10]Wang Y Z,Banerjee D,Su C C,Khachaturyan A G.Acta Mater,1998;46:2983
[11]Li D Y,Chen L Q.Scr Mater,1997;37:1271
[12]Vaithyanathan V,Chen L Q.Acta Mater,2002;50:4061
[13]Wang J C,Osawa M,Yokokawa T,Harada H,Enomoto M.Comport Mater Sci,2007;39:871
[14]Zhu J Z,Chen L Q,Shen J,Tikare V.Phys Rev,1999; 60E:3564
[15]Chen L Q,Shen J.Comput Phys Commun,1998;108:147
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[5] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[6] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[7] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[8] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[10] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[11] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[12] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[13] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[14] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[15] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
No Suggested Reading articles found!