Please wait a minute...
Acta Metall Sin  2007, Vol. 42 Issue (1): 47-52     DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of pre-compression on tensile creep properties of a single crystal nickel-base superalloy
shui li
沈阳理工大学;沈阳工业大学
Cite this article: 

shui li. Influence of pre-compression on tensile creep properties of a single crystal nickel-base superalloy. Acta Metall Sin, 2007, 42(1): 47-52 .

Download:  PDF(517KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ABSTRACT After P-type rafted structure was obtained by compressive creep of a nickel base single crystal superalloy with [001] orientation, creep tests were performed to examine in more detail the relative creep behavior of rafted (pre-compression) and cuboidal (as-heat treated) γ’ microstructures. The experiments show that, at 800℃ and 600MPa, the alloy with the P-type structure has both much higher strain of primary creep and steady state creep rate, and rupture lives are shorter. TEM examination of the microstructures of the P-type structure indicates that, in addition to {111}<110>-slip system operated in γ matrix, the γ’ precipitates are cut by some superlattice dislocations and a few stacking fault. At low stress of 200MPa and temperature range from 980℃ to 1020℃, the glide-climb process along γ/γ’ interfaces is impeded most efficiently by P-type rafted structure, the alloy exhibits a lower minimum creep rate and longer rupture lives. It is deduced that the tensile creep strength of the alloy is improved by suitable pre-compression treatment.
Key words:  Ni-base single crystal superalloy      tensile creep      pre-compression treatment      dislocation      
Received:  17 May 2006     
ZTFLH:  TG132.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V42/I1/47

[1] Feller-Kniepmeier M,Kuttner T.Acta Metall Mater, 1994;42:3167
[2] Nathal M V,MacKay R A,Miner R V.Metall Trans, 1989;20A:133
[3] Pearson D D,Lemkey F D,Kear B H.In:Tien J K, Wlodek S T,Morrow HⅢ,Gell M,Maurer G E,eds., Superalloys 1980,Metals Park,OH: ASM,1980:513
[4] Pearson D D,Kear B H,Lemkey F D.In Creep and Frac- ture of Engineering Materials and Structure.Swansea, UK:Pineridge Press,1983:213
[5] Caron P,Khan T.Mater Sci Eng,1983;A61:173
[6] Guo.J T,Ranucci D,Picco E,Strocchi P M.Metall Trans, 1983;14A:2329
[7]Milligan W W,Antolovich S D.Metall Trans,1991;22A: 2309
[8] Condat M,Decamps B.Scr Metall,1987;21:607
[9] Ha K F.Microscopic Theory of Metal Mechanical Prop- erties.Beijing:Science Press,1983:520 (哈宽富.金属力学性质的微观理论.北京:科学出版社,1983:520)
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[8] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!