Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 521-527     DOI:
Research Articles Current Issue | Archive | Adv Search |
Electrochemical investigation of hydrogen induced cracking behaviors of X70 pipeline steel and welds
Yingrui Zhang
北京科技大学材料学院腐蚀与防护中心
Cite this article: 

Yingrui Zhang. Electrochemical investigation of hydrogen induced cracking behaviors of X70 pipeline steel and welds. Acta Metall Sin, 2006, 42(5): 521-527 .

Download:  PDF(1448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, the hydrogen induced cracking (HIC) of X70 pipeline steel was studied in different concentrations of H2SO4 solution by means of electrochemical charging. Larger current densities, longer charging time and lower pH values of solution would promote the entry of hydrogen into X70 steel. Non-metallic inclusions such as nitrides and oxides play different roles in HIC of X70 steel. Microscopic observation shows that there is no dependency relation between cracks induced by hydrogen and the inclusions of titanium nitrides. Otherwise, oxides of magnesium aluminum and calcium etc are more harmful as the sources of hydrogen induced cracks. According to the results of hydrogen permeation test, the effective diffusivity (Deff) of hydrogen at room temperature is 3.34×10-9cm2/s. Tensile specimens of X70 steel and welds shows severe plasticity loss after hydrogen charging. The plasticity of welds is not as good as X70 base metal.
Key words:  X70 pipeline steel      hydrogen induced cracking      hydrogen permeation      welds      
Received:  08 August 2005     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/521

[1] Wang S H, Luu W C, Ho K F, Wu J K. Mater Chem Phys, 2002; 77: 447
[2] Lin X M. Nat Gas Oil, 2001; 19(2): 32 (林雪梅.天然气与石油,2001;19(2):32)
[3] Mi Q Z. Welded Pipe Tube, 2000; 23(6): 16 (米秋占.焊管,2000;23(6):16)
[4] Li Y T, Du Z Y, Tao Y Y, Xiong L Y. Trans Chin Weld Inst, 2003; 24(3): 76 (李云涛,杜则裕,陶勇寅,熊林玉.焊接学报,2003:24(3): 76)
[5] Lunarska E, Ososkov Y, Jagodzinsky Y. Int J Hydrogen Energy, 1997; 22 : 279
[6] Kumkum B, Chatterjee U K. Scr Mater, 2001; 44: 213
[7] Chattoraj I, Tiwari S B, Ray A K, Mitra A, Das S K. Corros Sci, 1995; 37: 885
[8] Li Y T, Du Z Y, Tao Y Y, Xiong L Y. Trans Chin Weld Inst, 2004; 25(5): 104 (李云涛,杜则裕,陶勇寅,熊林玉.焊接学报,2004;25(5): 104)
[9] Li H L, Feng Y R, Huo C Y, Ma Q R. Chin Metall, 2003; 13(4): 36 (李鹤林,冯耀荣,霍春勇,马秋荣.中国冶金,2003;13(4): 36)
[10] Li H L. Chin Mech Eng, 2001; 12: 349 (李鹤林.中国机械工程,2001;12:349)
[11] Wang C M, Wu X F. Angang Technol, 2004; (5): 21 (王春明,吴杏芳.鞍钢技术,2004;(5):21)
[12] Chu W Y. Hydrogen Attack and Delayed Fracture. Beijing: Metallurgical Industry Press, 1988: 190, 255 (褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988: 190,255)
[13] Kim W K, Koh S U, Kim K Y. In: Chinese Society for Corrosion and Protection ed., Proc 16th Int Corros Congress. Beijing, 2005: 10-H-21
[14] Yen S K, Huang I B. Corrosion, 2003; 59: 995
[15] Yen S K, Huang I B. Mater Chem Phys, 2003; 80: 662
[16] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environmental Fracture. Beijing: Science Press, 2000: 100 (褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京: 科学出版社,2000:100)3
[1] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[2] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[3] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[4] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[5] DONG Futao, DU Linxiu, LIU Xianghua, XUE Fei. INFLUENCE OF CONTINUOUS ANNEALING PROCESS ON MICROSTRUCTURE AND PROPERTIES OF BORON CONTAINING ENAMEL STEEL[J]. 金属学报, 2013, 49(10): 1160-1168.
[6] LIU Zhiyong DONG Chaofang JIA Zhijun LI Xiaogang . PITTING CORROSION OF X70 PIPELINE STEEL IN THE SIMULATED WET STORAGE ENVIRONMENT[J]. 金属学报, 2011, 47(8): 1009-1016.
[7] CHEN Yexin CHANG Qinggang. EFFECT OF TRAPS ON DIFFUSIVITY OF HYDROGEN IN 20g CLEAN STEEL[J]. 金属学报, 2011, 47(5): 548-552.
[8] SONG Yiquan DU Cuiwei ZHANG Xin LI Xiaogang. INFLUENCE OF Cl$^{-}$ CONCENTRATION ON CREVICE CORROSION OF X70 PIPELINE STEEL[J]. 金属学报, 2009, 45(9): 1130-1134.
[9] . STRESS--STRAIN BEHAVIORS AROUND THE YIELD STRENGTH IN SEQUENTIAL ROOM TEMPERATURE CREEP TESTS[J]. 金属学报, 2009, 45(7): 840-843.
[10] LIU Zhi-yong; Xiaogang LI. SCC OF X70 PIPELINE STEEL IN SIMULATED ACID SOIL ENVIRONMENT[J]. 金属学报, 2008, 44(2): 209-214 .
[11] . PLASTIC DEFORMATION OF METALLIC MEMBRANE INDUCED BY HYDROGEN PERMEATION[J]. 金属学报, 2007, 43(3): 327-331 .
[12] Xuechong Ren. EFFECT OF CASTING TEMPERATURE AND MACROSTRUCTURE ON HYDROGEN-INDUCED CRACKING OF TYRE[J]. 金属学报, 2007, 43(2): 149-153 .
[13] SONG Yiquan; DU Cuiwei; ZHANG Xin; LI Xiaogang. CATHODIC POLARIZATION AGAINST CREVICE CORROSION OF X70 PIPELINE STEEL IN SIMULATED SOLUTION OF KU'ERLE SOIL IN XINJIANG[J]. 金属学报, 2006, 42(3): 305-310 .
[14] ZHANG Yue;KONG Feng;WANG Yanbin;QIAO Lijie;CHU Wuyang;XIAO Jimei University of Science and Technology Beijing. FRACTAL DIMENSIONS OF HYDROGEN INDUCED BRITTLE FRACTURE OF TITANIUM ALUMINIDE[J]. 金属学报, 1993, 29(9): 11-17.
[15] XU Jian; SUN Xiukui; CHEN Wenxiu; LI Yiyi (State Key Laboratory of RSA; Institute of Metal Research; Academia Sinica). HYDROGEN PERMEATION AND DIFFUSION IN ALLOY INCOLOY 903[J]. 金属学报, 1992, 28(11): 23-27.
No Suggested Reading articles found!