Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 394-398     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite-element modeling of pure magnesium swaging
Li Rong;;
北京工业大学 材料科学与工程学院
Cite this article: 

Li Rong. Finite-element modeling of pure magnesium swaging. Acta Metall Sin, 2006, 42(4): 394-398 .

Download:  PDF(805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Abstract: A general finite-element software program, Marc/Mentat, has been used to develop a coupled thermo-mechanical model of rotary swaging process of pure magnesium. Distributions and transitions of stress and strain are clarified and the critical conditions predicting two deformation defects are obtained. The deformation zone can be divided into three parts: Ⅰis the bulging head-end, Ⅱthe formed zone and Ⅲ the reduction zone. In the formed zone, the equivalent strain distributes inhomogeneously along the radial direction. The equivalent strain in the center is not more than half of that at the edge. The critical conditions preventing insufficient forging and edge-crack are εc≥ε0,εe<εb, respectively. The residual stresses are between 18MPa and 30MPa. Temperature-rising owing to the heat translateded from plastic deformation energy is not notable.
Key words:  rotary swaging      magnesium      finite element analysis      deformation behavior      
Received:  08 August 2005     
ZTFLH:  TG146.2  
  TG31  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/394

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[2] Takuda H, Yoshii T, Hatta N. J Mater Proc Technol, 1999; 89-90: 135
[3] Jin W Z, Liu S H, Liu L M. Met Forming Technol, 2003; 21(6): 73 (金文中,刘顺华,刘黎明.金属成形工艺, 2003;21(6):73)
[4] Yin X S. Principle and Technology of Wolframium Filament Production and its Properties. Beijing: Metallurgical Industry Press, 1991: 289 (印协世.钨丝生产原理、工艺及其性能.北京:冶金工业出版 社,1991:289)
[5] Yoshihara S, Mac Donald B, Hasegawa T. J Mater Proc Technol, 2004; 153-154: 816
[6] Hariharasudhan Palaniswamy, Gracious Ngaile, Taylan Altan. J Mater Proc Technol, 2004; 146: 52
[7] Chung S W, Kim W J, Higashi K. Scr Mater, 2004; 51: 1117
[8] Avedesian M M. ASM Specialty Handbook-Magnesium and Magnesium Alloys. Metals Park, OH, USA: ASM, 1999: 1
[9] Rong L, Nie Z R, Du W B, Zuo T Y. In: Dissertation Corpus of Forum for China Magnesium Industry Development, Beijing: Chinese Magnesium Association, 2004: 122 (荣莉,聂祚仁,杜文博,左铁镛.见:中国镁业发展高层论坛 专题报告文集,北京:中国有色金属工业协会镁业分会,2004: 122)
[10] Zncropera F P, Dewitt D P, translated by Ge X S. Fundamentals of Heat Transfer. Hefei: Anhui Educational Press, 1985: 3 (Zncropera F P,Dewitt D P,葛新石译.传热的基本原理. 合肥:安徽教育出版社, 1985:3)
[11] MSC Software Corporation. MSC Marc 2001. Metals, Park, OH, USA: MSC Software Corporation, 2001: 4
[12] Lin F Y. Special Forging Technology. Beijing: China Machine Press, 1991: 170 (林法禹.特种锻压工艺.北京:机械工业出版社,1991:170)
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[9] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[11] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[15] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
No Suggested Reading articles found!