Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 389-393     DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of modulation structure on the growth behavior, structural characterization and mechanical properties of TiN/TaN multilayers
Qingyu Zhang
大连理工大学
Cite this article: 

Qingyu Zhang. Influence of modulation structure on the growth behavior, structural characterization and mechanical properties of TiN/TaN multilayers. Acta Metall Sin, 2006, 42(4): 389-393 .

Download:  PDF(830KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  TiN/TaN multilayers with same period and different modulation ratios have been fabricated using reactive magnetron sputtering methods. X-ray diffraction and high-resolution transmission electron microscopy were used to determine the structural characterization of the multilayers and their mechanical properties were measured by a nanoindentation method. The results show that modulation structure affects both the growth rate and preferred growth direction. With the increase of layer thickness (TiN or TaN), the growth rate of the layer decreases. We also find that two kinds of grains with (111) and (100) normal to the films grow epitaxtially with slightly different modulation periods. The hardness and moduli of TiN/TaN multilayers increase by about 50% and 30%, respectively. The maximum values appear at the modulation ratio of 3:1, hardness is 34.2 GPa and modulus is 344.9 GPa. Based on the structure analysis and the mechanical properties, the hardening mechanism in TiN/TaN multilayers are discussed in the paper.
Key words:  TiN/TaN multilayers      growth behavior      structural characterization      mechanical properties      
Received:  15 July 2005     
ZTFLH:  O484  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/389

[1] Yashar P C, Sproul W D. Vacuum, 1999; 55: 179
[2] Pankov V, Evstigneev M, Prince R H. J Appl Phys, 2002; 92: 4255
[3] Xu J H, Kamiko M, Zhou Y M, Yamamoto R. J Appl Phys, 2001; 89: 3674
[4] Mirkarimi P B, Hultman L, Barnett S A. Appl Phys Lett, 1990; 57: 2654
[5] Chu X, Barnett S A, Wong M S, Sproul W D. Surf Coatings Technol, 1993; 57: 13
[6] Nordina M, Ericsonb F. Thin Solid Films, 2001; 385: 174
[7] Lao J J, Kong M, Zhang H J, Li G Y. Ada Phys Sin, 2004; 53: 1961 (劳技军,孔明,张惠娟,李戈扬.物理学报,2004;53:1961)
[8] Wei L, Mei H, Shao N, Kong M, Li G, Li J. Appl Phys Lett, 2005; 86: 21919
[9] Pankov V, Evstigneev M, Prince R H. J Appl Phys, 2002; 92: 4255
[10] Boutos V T, Sanjines R, Karimi A. Surf Coat Technol, 2004; 188: 409
[11] Pharr G M, Oliver W C, Brotzen F R. J Mater Res, 1992; 7: 613
[12] Kato M, Moti T, Schwartz L H. Acta Metall, 1980; 28: 285
[13] Xu J H, Li G Y, Gu M Y. Acta Metall Sin, 1999; 35: 1214 (许俊华,李戈扬,顾明元.金属学报, 1999;35:1214)q
[1] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[2] Guanglu MA, Xinyu CUI, Yanfang SHEN, CINCA Nuria, M. GUILEMANY Josep, Tianying XIONG. INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER[J]. 金属学报, 2016, 52(12): 1610-1618.
[3] Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. 金属学报, 2015, 51(6): 668-676.
[4] LIU Mengying, CHANG Hai, XU Feng, XU Zhengfang, YANG Zhao, WANG Ning, GAN Weimin, FENG Qiang. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF TC1 ALLOY FABRICATED BY PLASMA ARC COLD HEARTH MELTING DURING ROLLING PROCESS[J]. 金属学报, 2015, 51(3): 341-348.
[5] SUN Yuan, LIU Jide, LIU Zhongming, YANG Jinxia, LI Jinguo,JIN Tao, SUN Xiaofeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF DD5 SINGLE CRYSTAL SUPERALLOY JOINT BRAZED BY Co—BASED FILLER ALLOY[J]. 金属学报, 2013, 49(12): 1581-1589.
[6] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
[7] WU Zhongzhen TIAN Xiubo CHENG Sida GONG Chunzhi YANG Shiqin. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DLC FILMS DOPED WITH HIGH CRYSTALLINITY CrN NANOPARTICLES[J]. 金属学报, 2012, 48(3): 283-288.
[8] WANG Changjun YONG Qilong SUN Xinjun MAO Xinping LI Zhaodong YONG Xi. EFFECTS OF Ti AND Mn CONTENTS ON THE PRECIPITATE CHARACTERISTICS AND STRENGTHENING MECHANISM IN Ti MICROALLOYED STEELS
PRODUCED BY CSP
[J]. 金属学报, 2011, 47(12): 1541-1549.
[9] FENG Chun FANG Hongsheng BAI Bingzhe ZHENG Yankang. PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb[J]. 金属学报, 2010, 46(4): 473-478.
[10] KANG Xu SHI Qingyu SUN Kai WANG Xin. INFLUENCES ON MECHANICAL PROPERTIES OF FRICTION STIR WELDED JOINTS BY Al CLAD ACCUMULATION[J]. 金属学报, 2010, 46(12): 1517-1521.
[11] BAI Qingshun TONG Zhen LIANG Yingchun CHEN Jiaxuan WANG Zhiguo. SIMULATION OF SCALE DEPENDENCY ON TENSILE MECHANICAL PROPERTIES OF SINGLE CRYSTAL COPPER NANO–ROD[J]. 金属学报, 2010, 46(10): 1173-1180.
[12] WAN Xiaofeng; SUN Yangshan; XUE Feng; BAI Jing; TAO Weijian. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg–12Zn–4Al–0.3Mn ALLOY CONTAINING Sr AND Ca[J]. 金属学报, 2009, 45(5): 585-591.
[13] LEI Wenping SHEN Jian MAO Baiping LI Junpeng YAN Liangming. STUDY ON AGING PRECIPITATION BEHAVIOR OF Al–5.2Cu–0.4Mg–1.02Ag ALLOY[J]. 金属学报, 2009, 45(5): 579-584.
[14] yuyong chen; BaoHui Li. Microstructure and mechanical properties evolution of Ti-45Al-5Nb-0.3Y alloy by thermo-mechanical treatments[J]. 金属学报, 2008, 44(6): 757-763 .
[15] ;. RESEARCH ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW WROUGHT SUPERALLOY[J]. 金属学报, 2008, 44(5): 540-546 .
No Suggested Reading articles found!