Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 311-316     DOI:
Research Articles Current Issue | Archive | Adv Search |
NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING
Cite this article: 

. NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING. Acta Metall Sin, 2006, 42(3): 311-316 .

Download:  PDF(400KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  With considering the characteristics of keyhole plasma arc welding and the plasma’s “digging” action to the weld pool, a new welding heat source model (TPAW) is proposed to describe and reflect the “reversed bugle” configuration of weld cross section under plasma’s action and the heat intensity distribution along the workpiece thickness direction. Based on TPAW, finite element calculation of temperature field in keyhole plasma arc welding is conducted, and the transient development of weld pool and surrounding thermal profiles are analyzed. The predicted weld geometry and the time needed to reach the quasi-steady state are in agreement with experimental measurements.
Key words:  keyhole plasma arc welding (K-PAW)      heat source model      temperature field      
Received:  27 June 2005     
ZTFLH:  TG402  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/311

[1] Dong C L, Wu L, Shao Y C. Chin Mech Eng, 2000; 11: 577 (董春林,吴林,邵亦陈.中国机械工程, 2000;11:577)
[2] Zhu Y F, Zhang H, Dong C L, Shao Y C. Aerosp Manuf Technol, 2002; (2): 22 (朱佚峰,张慧,董春林,邵亦陈.航天制造技术,2002;(2): 22
[3] Zhang Y M, Zhang S B. Weld J, 1999; 78(2) : 53s
[4] Mackwood A P, Crafer R C. Optics Laser Technol, 2005; 37: 99
[5] Dowden J, Postacioglu N, Davis M, Kapadia P D. J Phys D: Appl Phys, 1987; 20: 36
[6] Kroos J, Gratzke U, Simon G. J Phys D: Appl Phys, 1993; 26: 474
[7] Chen X, Wang H X. J Phys D: Appl Phys, 2003; 36: 1634
[8] Metcalfe J C, Quigley M B C. Weld J, 1975; 54(3): 99s
[9] Lankalapalli K N, Tu J F, Gartner M. J Phys D: Appl Phys, 1996; 29: 1831
[10] Kaplan A. J Phys D: Appl Phys, 1994; 27: 1805
[11] Pecharapa W, Kar A. J Phys D: Appl Phys, 1997; 30: 3322
[12] Lampa C, Kaplan A, Powell J, Magnusson C. J Phys D: Appl Phys, 1997; 30: 1293
[13] Dong H G, Gao H M, Wu L. Trans Chin Weld Inst, 2003; 23: 24 (董洪刚,高洪明,吴林.焊接学报,2003;23:24)
[14] Sun J S, Wu C S. Ada Metall Sin, 2003; 39: 79 (孙俊生,武传松.金属学报, 2003;39:79)
[15] Fan H G, Kovacevic R. J Phys D: Appl Phys, 1999; 32: 2902
[16] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283
[17] Nehad A K. Int Commn Heat Mass Transfer, 1995; 22: 79
[18] Goldak J, Chakravarti A, Bibby M. Metall Trans, 1984; 15B: 299
[19] Wang H G, Wu C S, Zhang M X. Trans Chin Weld Inst, 2005; 25: 63 (王怀刚,武传松,张明贤.焊接学报, 2005;25:63)
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[4] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[6] LI Yan, FENG Yanhui, ZHANG Xinxin, WU Chuansong. A DYNAMIC HEAT SOURCE MODEL WITH RESPECT TO KEYHOLE EVOLUTION IN PLASMA ARC WELDING[J]. 金属学报, 2013, 49(7): 804-810.
[7] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[8] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[9] XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou. FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY[J]. 金属学报, 2012, 48(9): 1033-1041.
[10] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[11] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[12] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[13] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[14] Qiaodan Hu; Peng Luo; Jianguo Li. FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE[J]. 金属学报, 2008, 44(10): 1253-1259 .
[15] . Numerical Simulation of two-phase Solidification Process of[J]. 金属学报, 2007, 43(6): 668-672 .
No Suggested Reading articles found!