Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (11): 1227-1232     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructures and Mechanical Property of Low Carbon Manganese Steel With
LI Long1); DING Hua1;2); DU Linxiu2);SONG Hongmei3); ZHENG Fang3)
1) School of Materials and Metallurgy; Northeastern University; Shenyang 110004 2) The State Key Lab. of Rolling and Automation; Northeastern University; Shenyang 110004 3) Baosteel Technology Center; Baoshan Iron & Steel Group Co.; Shanghai 201900
Cite this article: 

LI Long; DING Hua; DU Linxiu; SONG Hongmei; ZHENG Fang. Microstructures and Mechanical Property of Low Carbon Manganese Steel With. Acta Metall Sin, 2006, 42(11): 1227-1232 .

Download:  PDF(1056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermo-mechanical controlled process (TMCP) experiments with various finish rolling temperature (FRT) and coiling temperature (CT) have been carried out on a low carbon manganese steel at temperatures above Ar3. OM and TEM observations indicate that the ferrite in uniform distribution and a certain amount of bainite could be obtained. Deformation induced ferrite transformation (DIFT) occurred when the FRT decreased to 800℃. Accelerated cooling (60℃/s) to 400℃ (CT) refines the allotriomorphic ferrite grain but retards the nucleation of intragranular ferrite with its distribution on prior austenite grain boundary as well as the volume fraction of bainite increased, and the strength increased but the elongation decreased and yield ratio became much higher on the steel. The good combination of mechanical properties of the steel with grain boundary allotriomorphic ferrite/banite could be gained by controlling FRT (800℃-850℃), cooling rate (40℃/s) and CT (550℃), in which ferrite grain size was about 8-8.5µm and the volume fraction of bainite about 20%.
Key words:  low carbon manganese steel      finish rolling temperature      deformation induced ferrite transformation      bai     
Received:  02 March 2006     
ZTFLH:  TG142  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I11/1227

[1] Dong H, Sun X J, Liu Q Y, Weng Y Q. Iron Steel, 2003; 38(10): 57 (董瀚,孙新军,刘清友,翁宇庆.钢铁,2003;38(10):57)
[2] Matsumura Y, Yada H. Trans Iron Steel Inst Jpn, 1987; 27: 492
[3] Hodgson P D, Hickson M R, Gibbs R K. Scr Mater, 1999; 40: 1179
[4] Hickson M R, Gibbs R K, Hodgson P D. ISIJ Int, 1999; 39: 1176
[5] Han B Q, Yue S. J Mater Process Technol, 2003; 136: 100
[6] Xu P G, Fang H S, Bai B Z, Wang Z L, Yang Z G, Huang J G. J Iron Steel Res Int, 2002; 9(2): 33
[7] Wang J P, Yang Z G, Bai B Z, Fang H S. Mater Sci Eng, 2004; A369: 112
[8] Xu P G, Fang H S, Bai B Z, Yang Z G. Acta Metall Sin, 2002; 38: 255 (徐平光,方鸿生,白秉哲,杨志刚.金属学报,2002;38:255)
[9] Wang G D, Liu X H, Li W J, Du L X, Zhang H M. Iron Steel, 2001; 36(5): 39 (王国栋,刘相华,李维娟,杜林秀,张红梅.钢铁,2001;36(5): 39)b
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[4] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[5] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[7] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[8] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[9] WANG Zhanhua, HUI Weijun, XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. 金属学报, 2020, 56(11): 1441-1451.
[10] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[11] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[12] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[13] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[14] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[15] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
No Suggested Reading articles found!