Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 375-379     DOI:
Research Articles Current Issue | Archive | Adv Search |
Deformation~ Features Of AZ31 Mg--Alloy In Initial Period Of High Temperature Creep
TIAN Sugui; YANG Jinghong; YU Xingfu;SOHN Keunyong; KIM Kyunghyun;XU Yongbo; HU Zhuangqi
Department of Materials Science and Engineering; Shenyang University of Technology; Shenyang 110023
Cite this article: 

TIAN Sugui; YANG Jinghong; YU Xingfu; SOHN Keunyong; KIM Kyunghyun; XU Yongbo; HU Zhuangqi. Deformation~ Features Of AZ31 Mg--Alloy In Initial Period Of High Temperature Creep. Acta Metall Sin, 2005, 41(4): 375-379 .

Download:  PDF(415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By means of the measurement of the creep curve and the observation of TEM, an investigation has been made into the deformation feature and microstructure evolution of AZ31 Mg--alloy in the initial creep at elevated temperature. The results show that the deformation feature during creep produced in the primary stage is that a great deal of $\langle a\rangle$ dislocation is activated on basal and non--basal planes, and $\langle a+c\rangle$ dislocation slips on pyramidal planes. $\langle a\rangle$ dislocation generated during creep may cross--slip from one of non--basal plane to another non--basal planes. As creep goes on, the dynamic recovery (DRV) may occur, and the dislocations are concentrated to form the dislocation cells or walls. Another feature observed during creep is that twinning occurs as an important deformation mechanism, leading to improvement of the alloy ductility.
Key words:  AZ31 Mg-alloy      creep      dislocations      
Received:  26 May 2004     
ZTFLH:  TG111  
  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/375

[1]Winandy C D. In: Smith S D, Winandy C D, eds., Automotive Sourcing Special Report, London: Automotive Sourcing UK Ltd., 1998: 1
[2]Robert S B. Magnesium Products Design. USA: The International Magnesium Association. 1987: 373
[3]Claude D W. In: Smith S D, Winandy C D, eds., Automotive Sourcing Special Report, London: Automotive Sourcing UK Ltd., 1998: 8
[4]McQueen H J, Bourell D L. J Met, 1987; 39: 28
[5]McQueen H J, Bourell D L. J Mater Shaping Technol, 1987; 5: 53
[6]McQueen H J, Pekguleryuz M, In: Mordike B L, Hehman F, eds., Magnesium Alloys and Their Applications, Oberursel: DGM, 1992: 101
[7]Sittner P, Paidar V. Acta Metall, 1989; 37: 1717
[8]Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Mater Sci Eng, 2003; A337: 121
[9]Galiyev A, Kabyshev R, Gottstein G. Acta Mater, 2001; 49: 1199
[10]Sheerly W F, Nash R R. Trans Metall Soc AIME, 1960; 218: 416
[11]Obara T, Yoshinaga H, Morozumi S. Acta Metall, 1973; 21: 845
[12]Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K. Acta Mater, 2003; 51: 2055
[13]Loreth M, Morton J, Jacobson K, Katrak F, Agarwal J. In: MacEwan S, Gilardeau J P, eds., Recent Metallurgical Advances in Light Metals, Montreal: Met Soc CIM, 1995: 11R
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[7] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[9] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[10] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[11] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[12] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[14] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
No Suggested Reading articles found!