Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 347-350     DOI:
Research Articles Current Issue | Archive | Adv Search |
Eeffects Of Grain—Size Distribution On Effective Anisotropy And Coercivity For Nanocrystalline Hard Magnetic Material
FENG Weicun; GAO Ruwei; LI Wei
School of Physics and Microelectronics; Shandong University; Jinan 250100
Cite this article: 

FENG Weicun; GAO Ruwei; LI Wei. Eeffects Of Grain—Size Distribution On Effective Anisotropy And Coercivity For Nanocrystalline Hard Magnetic Material. Acta Metall Sin, 2005, 41(4): 347-350 .

Download:  PDF(134KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Taking nanocrystalline Nd2Fe14B as a typical sample, the effects of grain-size distribution on the anisotropy and coercivity in nanocrystalline hard magnetic materials have been investigated. The calculating results reveal that the effective anisotropy and coercivity of material decrease with the reduction of grain size, and rapidly decrease while the grain size is less than 20nm. The non-ideal distribution of grain size does not change the variation trendency of the effective anisotropy and coercivity with reducing grain size, however, promotes the decrease rate of effective anisotropy and coercivity. When the microstructure factor, pc, is 0.7, our calculated results agree basically with the experimental results. The decrement of coercivity is mainly due to the reduction of effective anisotropy for nanocrystalline Nd2Fe14B permanent magnetic material. nanocrystalline Nd2Fe14B hard magnet; effective anisotropy ; coercivity ; grain-size distribution
Key words:  nanocrystalline Nd2Fe14B hard magnet      effective anisotropy      
Received:  23 June 2004     
ZTFLH:  TG132.2  
  TM273  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/347

[1]Herzer G. IEEE Trans Mag, 1990; 26: 1397
[2]Manaf A, Buckley R A, Davies H A, Leonowicz M. J Magn Magn Mater, 1991; 101: 360
[3]Areas J, Hernando A, Barandiaran J M. Phys Rev B, 1998; 58: 5193
[4]Kronmuller H, Fischer R, Seeger M, Zern A. J Phys D Appl Phys, 1996; 29: 2274
[5]Han G B, Gao R W, Yan S S, Fu S, Feng W C. Appl Phys A, in pressed
[6]Bauer J, Seager M, Zem A, Kronmuller H. J Appl Phys, 1996; 80: 1667
[7]Fischer R, Schrefl T, Kronmuller H, Fidler J. J Magn Magn Mater, 1996; 153: 35
[8]Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G. Acta Phys Sin, 2003; 52: 718 (张宏伟,荣传兵,张健,张绍英,沈保根.物理学报,2003; 52:718)
[9]Sun X K, Zhang J, Chu Y L. Appl Phys Lett, 1999; 74: 1740B
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] LIU Zhiyuan, WANG Yonggui, ZHAO Chengyu, YANG Ting, XIA Ailin. Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials[J]. 金属学报, 2022, 58(8): 979-991.
[3] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[4] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[5] DU Jinhui,LV Xudong,DONG Jianxin,SUN Wenru,BI Zhongnan,ZHAO Guangpu,DENG Qun,CUI Chuanyong,MA Huiping,ZHANG Beijiang. Research Progress of Wrought Superalloys in China[J]. 金属学报, 2019, 55(9): 1115-1132.
[6] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[7] GAO Xuexu LI Jiheng ZHU Jie BAO Xiaoqian JIA Juncheng ZHANG Maocai. MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe-Ga POWDERS PREPARED BY GAS ATOMIZATION[J]. 金属学报, 2009, 45(10): 1267-1271.
[8] BAO Xiaoqian GAO Xuexu ZHU Jie ZHANG Maocai ZHOU Shouzeng. EFFECTS OF Nd CONTENT ON MAGNETIC PROPERTIES OF NANOCRYSTALLINE NdxFe94-xB6 ALLOYS[J]. 金属学报, 2009, 45(8): 988-993.
[9] BIAN Weimin ZHU Yimei ZHOU Lian. DETERMINATION OF SPACE GROUP OF INCOMMENSURATE MODULATION STRUCTURE PHASES IN Bi HIGH TEMPERATURE SUPERCONDUCTORS[J]. 金属学报, 2009, 45(6): 673-679.
[10] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[11] ZUO Xiao-Wei; Wang Engang Wang; Huan HAN; Lin Zhang; Jicheng He. MICROSTRUCTURE AND MAGNETIC PROPERTIES OF Fe-49%Sn HYPERMONOTECTIC ALLOYS IMPOSED BY A HIGH MAGNETIC FIELD[J]. 金属学报, 2008, 44(10): 1219-1223 .
[12] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[13] . GRAIN-SIZE DEPENDENCE OF COCIVITY OF NANOCOMPOSITE PERMANENT MAGNETS IN THREE PHASE-DISTRIBUTION MODELS[J]. 金属学报, 2008, 44(1): 8-12 .
[14] Shi-Cheng YAN. INFLUENCE OF RAW Mg POWDER ON BEHAVIOR OF PHASE FORMATION FOR Mg-B SYSTEM[J]. 金属学报, 2007, 43(4): 358-362 .
[15] Honglin Jiang. MAGNETOSTRICTION AND MICROSTRUCTURE OF THE MELT-SPUN Fe83Ga17 ALLOY[J]. 金属学报, 2006, 42(2): 177-180 .
No Suggested Reading articles found!