Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (11): 1143-1149     DOI:
Research Articles Current Issue | Archive | Adv Search |
Micro-mechanisms of fatigue damage in copper crystals
ZHANG Zhefeng; DUAN Qiqiang; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences
Cite this article: 

ZHANG Zhefeng; DUAN Qiqiang; WANG Zhongguang. Micro-mechanisms of fatigue damage in copper crystals. Acta Metall Sin, 2005, 41(11): 1143-1149 .

Download:  PDF(932KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Micro--mechanisms of fatigue damage in copper single-, bi- and poly- crystals were summarized in the present paper. A number of investigations reveal that fatigue crack mainly initiates along persistent slip bands (PSBs) in copper single crystals at low or medium strain range, however, nucleates along coarse deformation bands (DBs) at high strain range. For copper bi-crystals, various large-angle grain boundaries (GBs) are always the preferential sites for the nucleation and propagation of fatigue cracks while the low-angle GBs do not lead to fatigue cracking during fatigue. Fatigue cracks mainly nucleated along large--angle GBs, sometimes along PSBs in polycrystalline copper, however, the initiation of fatigue crack at twin boundaries (TBs) was not observed due to the compatible slip deformation across the TBs.
Key words:  copper crystal      fatigue crack      persistent slip band (PSB)      
Received:  30 June 2005     
ZTFLH:  TG113.25  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I11/1143

[1] Forsyth P J E. Nature, 1953; 171: 172
[2] Thompson N, Wadsworth N J, Louat N. Philos Mag, 1956; 1: 113
[3] Kemsley D S, Paterson M S. Acta Metall, 1960; 8: 453
[4] Basinski S J, Basinski Z B, Howie A. Philos Mag, 1969; 19: 899
[5] Hancock J R, Grosskreutz J C. Acta Metall, 1969; 17: 77
[6] Mughrabi H. Mater Sci Eng, 1978; 33: 207
[7] Winter A T. Philos Mag, 1974; A30: 719
[8] Finney J M, Laird C. Philos Mag, 1975; A31: 339
[9] Mughrabi H, Ackermann F, Herz K. ASTM STP 811, 1983
[10] Kim W H, Laird C. Acta Metall, 1978; 26: 789
[11] Suresh S. Fatigue of Materials. 2nd ed, Cambridge Press, 1998: 27
[12] Cheng A S, Laird C. Mater Sci Eng, 1981; 51: 111
[13] Essmann U, Gosele U, Mughrabi H. Philos Mag, 1981; A44: 405
[14] Zhang Z F, Wang Z G, Sun Z M. Acta Mater, 2001; 49: 2875
[15] Li X W, Wang Z G, Li S X. Philos Mag, 2000; A80: 1901
[16] Li S X, Li X W, Zhang Z F, Wang Z G. Philos Mag, 2002; A82: 867
[17] Hu Y M, Wang Z G. Acta Mater, 1997; 45: 2655
[18] Hu Y M, Wang Z G. Scr Mater, 1996; 35: 1019
[19] Hu Y M, Wang Z G. Int J Fatigue, 1997; 19: 59
[20] Hu Y M, Wang Z G. Int J Fatigue, 1998; 20: 463
[21] Zhang Z F, Wang Z G, Li S X. Fatigue Fract Eng Mater Struct, 1998; 21: 1307
[22] Zhang Z F, Wang Z G, Hu Y M. Mater Sci Eng, 1999; A269: 136
[23] Zhang Z F, Wang Z G. Philos Mag, 1999; A79: 741
[24] Wang Z G, Zhang Z F, Li X W, Jia W P, Li S X. Mater Sci Eng, 2001; A319-321: 63
[25] Zhang Z F, Wang Z G. Z Metallkd, 2002; 93: 1188
[26] Hu Y M, Wang Z G, Li G Y. Mater Sci Eng, 1996; 208: 260
[27] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[28] Zhang Z F, Wang Z G, Hu Y M. Mater Sci Eng, 1999; A272: 412
[29] Zhang Z F, Wang Z G. Philos Mag Lett, 2000; 80: 483
[30] Lim L C, Tay Y K, Fong H S. Acta Metall Mater, 1990; 38: 595
[31] Christ H J. Mater Sci Eng, 1989; A117: L25
[32] Liang F L, Laird C. Mater Sci Eng, 1989; A117: 103
[33] Heinz A, Neumann P. Acta Metall Mater, 1990; 38: 1933
[34] Ma B T, Laird C. Acta Metall, 1989; 37: 337
[35] Basinski Z B, Basinski S J. Prog Mater Sci, 1992; 36: 89
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[4] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[5] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[6] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[7] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[9] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[10] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[11] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[12] ZHANG Zhefeng ZHANG Peng TIAN Yanzhong ZHANG Qingke QU Shen ZOU Hefei DUAN Qiqiang LI Shouxin WANG Zhongguang. INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS[J]. 金属学报, 2009, 45(7): 788-800.
[13] TANG Lian LU Lei. EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu[J]. 金属学报, 2009, 45(7): 808-814.
[14] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[15] XIE Jijia HONG Youshi. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL[J]. 金属学报, 2009, 45(7): 844-848.
No Suggested Reading articles found!