|
|
GROWTH OF SILICON IN UNDERCOOLED Al50Si50 ALLOY MELT |
GE Lili; LIU Riping; WANG Qiang; WANG Wenkui |
GE Lili; LIU Riping; WANG Qiang; WANG Wenkui |
|
Cite this article:
GE Lili; LIU Riping; WANG Qiang; WANG Wenkui. GROWTH OF SILICON IN UNDERCOOLED Al50Si50 ALLOY MELT. Acta Metall Sin, 2004, 40(7): 683-688 .
|
Abstract Undercooled solidification of Al50Si50 (atomic fraction) melt
is achieved by repeatedly heating and cooling in electromagnetic
levitation facility. A maximum undercooling of 320 K is obtained.
Phase morphologies on surfaces and deeply etched sections of the samples
solidified at
different undercoolings are examined. The primary silicon
shows faceted dendrites with stratified deposits of aluminum at
small undercooling, but shows granular form without deposits of
aluminum at large undercooling. The form of the Al--Si eutectic
is also found changed into anomalous form at large undercoolings.
The microstructural refinement is observed at large
undercooling, as a result of solute restriction of
crystal growth and fragmentation of the primary silicon dendrites.
|
Received: 10 July 2003
|
|
[1] Fredriksson H, Hillert M, Lange N. J Inst Met, 1973; 101: 285 [2] Hellawell A. Progress Mater Sci, 1970; 15: 3 [3] Smith R W. Modification of Aluminium-Silicon Alloys inthe Solidification of Metals. London: Iron and Steel Inst,1968: 1 [4] Shamsuzzoha M, Hogan L M. Philos Mag A, 1986; 54:459 [5] Zhang D L, Cantor B. Metal! Trans A, 1993; 24: 1195 [6] Khan S, Elliot R. J Mater Sci, 1994; 29: 736 [7] Sens H, Eustathopoulos N, Camel D, Favier J J. ActaMetall Mater, 1992; 40: 1783 [8] Sundarrajan A, Mortensen A, Kattamis T Z, Flemings MC. Acta Metall Mater, 1998; 46: 91 [9] Magnin P, Mason J T, Trivedi R. Acta Metall Mater, 1991;39: 469 [10] Liang D, Bayraktar Y, Jones H. Acta Metall Mater, 1995;43: 579 [11] Ourdjini A, Elliot R. Mater Sci Technol, 1995; 11: 1241 [12] Bayraktar Y, Liang D, Jones H. J Mater Sci, 1995; 30:5939 [13] Atasoy O A, Yilmaz F, Elliott R. J Cryst Growth, 1984;66: 137 [14] Pierantoni M, Gremaud M, Magnin P, Stoll D, Kurz W.Acta Metall Mater, 1992; 40: 1637 [15] Gremaud M, Allen D R, Perepezko J H. Acta MetallMater, 1996; 44: 2669 [16] Allen D R, Gremaud M, Rappaz M, Perepezko J H. MaterSci Eng A, 1997; 226: 173 [17] Lu S Z, Hellawell A. J Cryst Growth, 1985; 73: 316 [18] Wang R Y, Lu W H, Hogan L M. Metall Mater Trans A,1997; 28: 1233 [19] Apayadin N, Smith R W. Mater Sci Eng A, 1988; 98: 149 [20] Herlach D M, Cochrane R F, Egry I, Fecht H J, Greer AL. Int Mater Rev, 1993; 38: 273 [21] Devaud G, Turnbull D. Appl Phys Lett, 1985; 46: 844 [22] Liu R P, Volkmann T, Herlach D M. Acta Mater, 2001;49: 439 [23] Aoyama T, Takamura Y, Kuribayashi K. Metall MaterTrans A, 1999; 30: 1333 [24] Shao Y, Spaepen F. J Appl Phys, 1996; 79: 2981 [25] Evans P V, Vitta S, Hamerton R G, Greer A L, TurnbullD. Acta Metall Mater, 1990; 38: 233 [26] Lau C F, Kui H W. Acta Metall Mater, 1994; 42: 3811 [27] Trivedi R, Kurz W. Int Metall Rev, 1994; 39: 49 [28] Boettinger W J, Coriell S R, Trivedi R. In: Mehrabian R, Parrish P A eds., Rapid Solidification Processing: Principles and Technologies IV, Claitor's, Baton Rouge, L.A, 1988: 13 [29] Li D, Herlach D M. Phys Rev Lett, 1996;. 77: 1801 [30] Battersby S E, Cochrane R F, Mullis A M. J Mater Sci,1999; 34: 2049 [31] Aoyama T, Kuribayashi K. Acta Mater, 2000; 48: 3739 [32] Macdonald C A, Malvezzi A M, Spaepen F. J Appl Phys,1989; 65: 129 [33] Aziz M J. J Appl Phys, 1982; 53: 1158 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|