Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 634-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Modelling of the Dendrite Growth by Using Continuous Method
LI Qiang; LI Dianzhong; QIAN Bainian
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LI Qiang; LI Dianzhong; QIAN Bainian. Modelling of the Dendrite Growth by Using Continuous Method. Acta Metall Sin, 2004, 40(6): 634-.

Download:  PDF(12938KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to precisely describe the dendrite evolution during solidification process, especially in the micro--scale, a continuous model is adopted to solve the discontinuous physical properties between solid and liquid phases. In this model the physical properties in the interface zone are the average physical properties of solid phase and liquid phase, which can smooth their properties gap and make the properties continuous from liquid to solid phases. In addition, the averaged solute concentration is used to keep the solute conservation in the local interface zone. The simulated results show that this model can deal with the properties gap between the solid and liquid phases in the interface zone, and further simulate the dendritic growth, local interface instability, and appearance of the second dendrite arm, tertiary dendrite arm and the pattern of micro--segregation.
Key words:  continuous model      dendrite      solute concentration      
Received:  26 May 2003     
ZTFLH:  TB115  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/634

[1] Dilthey U, Pavlik K. In: Thomas B G, Beckermann C eds,Welding and Advanced Solidification Processes-Ⅷ PA,Warrendale:1998:589
[2] Nastac L. Acta Mater, 1999; 47: 4253
[3] Zhu M F, Kim J M, Hong C P. ISIJ Inter, 2001; 41: 992
[4] Cho S H, Okane T, Umeda T. Sci Technol Adv Mater,2001; 2: 241
[5] Cinca G R. Physica A, 2002; 314: 284
[6] Nestler B, Wheeler A A, Garcke H. Comput Mater Sci,2003; 26: 111
[7] Damir J, Gretar T. J Comput Phys, 1996; 123: 127
[8] Udaykumar H S, Mao L. Int J Heat Mass Trans, 2002;45: 4793
[9] Eck C, Knabner P, Korotov S. J Comput Phys, 2002; 178:58
[10] Li Q, Guo Q Y, Li D Z, Qian B N, Li D M, Li R, Zhang P W. Chin Phys Lett, 2004; 21: 143
[11] Kurz W, Giovanola B, Thivedi R. Acta Metall, 1986; 34:823
[1] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[2] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[3] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[4] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[5] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[6] Qing LI,Zixing WANG,Shuyuan XIE. Research on the Development of Mathematical Model of the Whole Process of Electroslag Remelting and the Process Simulation[J]. 金属学报, 2017, 53(4): 494-504.
[7] Wenying GUO,Xiaoqiang HU,Xiaoping MA,Dianzhong LI. EFFECT OF TiN PRECIPITATES ON SOLIDIFICATION MICROSTRUCTURE OF MEDIUM CARBON Cr-Mo WEAR RESISTANT STEEL[J]. 金属学报, 2016, 52(7): 769-777.
[8] Yumin WANG,Shuangming LI,Hong ZHONG,Hengzhi FU. EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY[J]. 金属学报, 2015, 51(9): 1038-1048.
[9] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[10] Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS[J]. 金属学报, 2015, 51(6): 677-684.
[11] WANG Lilin, LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong. REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL[J]. 金属学报, 2015, 51(4): 492-498.
[12] Jianxin DONG,Linhan LI,Haoyu LI,Maicang ZHANG,Zhihao YAO. EFFECT OF EXTENT OF HOMOGENIZATION ON THE HOT DEFORMATION RECRYSTALLIZATION OF SUPERALLOY INGOT IN COGGING PROCESS[J]. 金属学报, 2015, 51(10): 1207-1218.
[13] YAN Yuncheng, DING Hongsheng, SONG Jinxia, KANG Yongwang, CHEN Ruirun, GUO Jingjie. EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2014, 50(9): 1039-1045.
[14] YE Xin, HUA Xueming, WANG Min, LOU Songnian. MICROSTRUCTURE EVOLUTION OF PARTIALLY MELTED ZONE OF TIG WELDING JOINT OF Ni-BASED INCONEL-718 SUPERALLOY[J]. 金属学报, 2014, 50(8): 1003-1010.
[15] ZHAO Jiuzhou, LI Lu, ZHANG Xianfei. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS[J]. 金属学报, 2014, 50(6): 641-651.
No Suggested Reading articles found!