Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (3): 291-295     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Hydride and Hydrogen—Induced Martensite on Fracture Toughness of TiNi Alloy
HE Jianying; GAO Kewei; QIAO Lijie; CHU Wuyang
Department of Materials Physics; University of Science and Technology Beijing
Cite this article: 

HE Jianying; GAO Kewei; QIAO Lijie; CHU Wuyang. Effect of Hydride and Hydrogen—Induced Martensite on Fracture Toughness of TiNi Alloy. Acta Metall Sin, 2004, 40(3): 291-295 .

Download:  PDF(13316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hydride formed in hydrogen charging TiNi shape memory alloy could decrease evidently fracture toughness K IC of the TiNi alloy and the relative loss of K IC is as high as 96%. The relative loss of K IC induced by the hydrogen induced martensite, however, is only about 1.8%, and does not change evidently with hydrogen concentration. Therefore, the decrease in fracture toughness of hydrogenated specimen is almost completely attributed to hydride. The relative loss of induced by hydrides, increases with increasing hydride content. Microcracks could be generated along the hydrides during charging at i>15 mA/cm2 and do not cause farther the decrease in K IC .
Key words:  TiNi      hydrogen      hydride      
Received:  11 March 2003     
ZTFLH:  TG111  
  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I3/291

[1] Duerig T, Pelton A, Stockel D. Mater Sci Eng, 1999; A273-275:149
[2] Buchner H, Gutjahr M A, Beccu K D, Saufferer H. Z Metall, 1972; 63:497
[3] Soubeyroux J L, Fruchart D. J Alloys Compd, 1993; 196:127
[4] Adachi Y, Wade N, Hosoi Y. J J pn Inst Met, 1990; 54:525
[5] Rotini A, Biscarini A, Campanella R, Coluzzi B, Mazzolai G, Mazzolai F M. Scr Mater, 2001; 44:719
[6] Shorshorov M Kh, Stepanov I A, Flomenblit Yun, Travkin V V. Phys Met Metall, 1985; 60:109
[7] Asaoka T, Yamashita M, Saito H, Ishida Y. J Jpn Inst Met, 1993; 57:1123
[8] Yokoyama K, Hamada K, Asaoka K. Mater Trans, 2001; 42:141
[9] Asaoka K, Yokoyama K, Nagumo M. Metall Mater Trans, 2002; 32A: 495
[10] Yokoyama K, Watabe S, Hamada K, Sqkai J, Asaoka K, Nagumo M. Mater Sci Eng, 2003; A741:91
[11] Gao K W, Wang Y B, Qiao L J, Chu W Y. Sci Chin, 1999; 42E: 511
[12] Pan C, Su Y J, Chu W Y, Li Z B, Qiao L J. Corros Sci, 2002; 44:1983
[13] Chu W Y. Hydrogen Damage and Delayed Fracture. Beijing: Metallurgy Industry Press, 1988; 275, 50(褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988;275,50)
[14] Schmidt R, Schlereth M, Wipf H, Assmus W, Mullner M. J Phys Condens Matter, 1989; 1:2473
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[5] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[6] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[9] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[12] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[13] Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy[J]. 金属学报, 2019, 55(2): 267-273.
[14] Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG. Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition[J]. 金属学报, 2018, 54(9): 1289-1296.
[15] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
No Suggested Reading articles found!