Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (1): 31-35     DOI:
Research Articles Current Issue | Archive | Adv Search |
Research Of The Equaxied Dendritic Growth In The Undercooled Melt Of The Pure Metal By Phase--Field Method
LI Xinzhong; GUO Jingjie; SU Yanqing; JIA Jun
Cite this article: 

LI Xinzhong; GUO Jingjie; SU Yanqing; JIA Jun. Research Of The Equaxied Dendritic Growth In The Undercooled Melt Of The Pure Metal By Phase--Field Method. Acta Metall Sin, 2004, 40(1): 31-35 .

Download:  PDF(198KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new way to improve computational efficiency of phase field is used to simulate the evolution of the equiaxed dendritic growth morphology in pure metal melt with initial dimensionless supercooling of 0.55. Much information about equiaxed dendritic growth has been got, which is in good agreement with experimental observation. The births of second arms and third arms have been simulated successfully by adding appropriate thermal noise. Furthermore, the dimensionless velocity and radius of the equiaxed dendritic axis' tip, and the Peclet number are computed, and the computational results by phase--field method are in good agreement with the ones by the microsolvability theory and the Ivantsov theory.
Key words:  Department of Materials Science and Engineering      Harbin Institute of Technology      
Received:  23 January 2003     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I1/31

[1] Chen W C, Chien L C. J Synthetic Cryst, 2002; 31:245(陈万春,简来成.人工晶体学报.2002;31:245)
[2] Wheeler A A, Murray B T, Schaefer R J. Physica, 1993; 66D: 243
[3] Wang S L, Sekerka R F, Wheeler A A, Murray B T, Coriell S R, Rraun R J, McFadden G B. Physica, 1993; 69D: 189
[4] Warren J A, Boettinger W I. Acta Metal Mater, 1995; 43: 689
[5] McCarthy J F. Acta Mater, 1997; 45:4077
[6] Wheeler A A, Boettinger W J, McFadden G B. Phys Rev, 1992; 47E: 1893
[7] Kobayashi R. Physica, 1993; 63D: 410
[8] Karma A, Rappel W-J. Phys Rev, 1997; 57E: 4323
[9] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X. J Computat Phys, 1999; 154
[10] Karma A, Rappel W J. Phys Rev, 1999; 60E: 3614
[11] Provatas N, Goldendeld N, Jonathan D. Phys Rev Lett, 1998; 80:3308
[12] Zhao D P, Jing T. Acta Metall Sin, 2002; 38:1238(赵代平,荆涛.金属学报,2002;12:1238)
[13] Tong X, Beckermann C, Karma A. Weld Adv Solidific Processes. 1998:613
[14] Ivantsov G P, Dokl. Akada Nank USSR, 1974; 58:567
[15] Karma A, Rappel W J. Phys Rev, 1996; 53E: 3017
[16] Glicksman. Metal Mater Sci Eng, 1984; 65:45
[17] Hu H Q. Principle of Metal Solidification. Beijing: Machinery Press, 2000:127(胡汉起.金属凝固原理.北京:机械工业出版社.2000:127)h
[1] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[2] . Analysis of the Correlation between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations[J]. 金属学报, 0, (): 0-0.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] . Liquid–solid Phase Separation Process of Pb–Al Alloy Under the Effect of Electric Current Pulses[J]. 金属学报, 0, (): 0-0.
[7] . Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation[J]. 金属学报, 0, (): 0-0.
[8] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[9] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[10] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[12] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[13] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[15] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
No Suggested Reading articles found!