Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (5): 527-531    DOI:
Current Issue | Archive | Adv Search |
BEHAVIOUR OF Nb BICRYSTALS UNDER TENSION AND CYCLIC DEFORMATION
WU Jiansheng; LIN Dangling(Shanghai Jiaotong University; Shanghai 200030)(Manuscript received 1995-10-04)
Cite this article: 

WU Jiansheng; LIN Dangling(Shanghai Jiaotong University; Shanghai 200030)(Manuscript received 1995-10-04). BEHAVIOUR OF Nb BICRYSTALS UNDER TENSION AND CYCLIC DEFORMATION. Acta Metall Sin, 1996, 32(5): 527-531.

Download:  PDF(380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Using Y shape seeds, Nb bicrystals with misorientations 7, 9 and 12°were grown respectively by floating zone method. The tension and cyclic deformation curves of Nb bicrystals have been obtained and compared with that of Nb single crystal. Slip lines on bicrystal specimens after deformation have been observed. It is found that the grain boundary of bicrystal did not affect the deformation bands. Finally the role of the grain boundary during deformation was discussed.
Key words:  Nb bicrystal      cyclic deformation      slip line     
Received:  18 May 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I5/527

1吴建生,林栋梁.金属学报,1995;31:A902吴建生,林栋梁.金属学报,1994;30:A1873林栋梁,吴建生,陈贤芬.金属学报,1989,25:A1214陈贤芬,吴建生,林栋梁,肖德传,应铁如,黄舂祥,李长英.上海金属(有色分册),1984:2:275 LinDL,WuJS,ChenXFIn:KettunenPOetal.,Eds.Proceedingsof8thInternationalConferenceofStregthofMetalsandAlloys,Tempere,Finland,NewYorkandLondon:PergamanPress,1988;2:7136 AngladaM,,GuiuF.PhilosMag, 1981;44:997林栋梁,吴建生.金属学报,1988:24:A76
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[3] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[4] ZHANG Siqian, WU Wei, CHEN Lili, CHE Xin, CHEN Lijia. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY[J]. 金属学报, 2014, 50(6): 700-706.
[5] JIANG Qingwei LIU Yin WANG Yao CHAO Yuesheng LI Xiaowu . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING[J]. 金属学报, 2009, 45(7): 873-879.
[6] ;. FINITE ELEMENT SIMULATION FOR CYCLIC DEFORMATION OF SiCP/6061Al ALLOY COMPOSITES[J]. 金属学报, 2006, 42(10): 1051-1055 .
[7] YANG Jihong; ZHANG Xinping; Y. W. MAI; LI Yong. Simulation Of Internal~ Stresses~ Near The Surface And Fatigue Crack Nucleation For A Copper Single Crystal In Cyclic Deformation Saturation Stage[J]. 金属学报, 2005, 41(1): 9-.
[8] ZHU Rong; LI Shouxin; LI Yong; LI Mingyang; CHAO Yuesheng. Formation and Annihilation of Persistent Slip Bands in Fatigued Copper Single Crystals[J]. 金属学报, 2004, 40(5): 467-470 .
[9] ZHANG Zhefeng; WANG Zhongguang; SU Huihe(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)Correspondent: ZHANG Zhefeng Tel: (024)23843531-55225; Fax: (024)23891320. CYCLIC DEFORMATION BEHAVIOR OF A COPPER BICRYSTAL WITH A PERPENDICULAR GRAIN BOUNDARY[J]. 金属学报, 1998, 34(8): 841-846.
[10] JIA Weiping; LI Shouxin; WANG Zhongguang; LI Xiaowu; LI Guangyi(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). COMPARISON BETWEEN CYCLIC DEFORMATION BEHAVIORS OF NON-ISOAXIAL COPPER TRICRYSTAL AND BICRVSTAL[J]. 金属学报, 1998, 34(7): 696-704.
[11] (LI Xiaowu; WANG Zhongguang; SUN Shouguang; WU Shiding; LI Shouxin;LI Guangyi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Mechanical Engineering; Northern Jiaotong University; Beijing 100044). CYCLIC DEFORMATION BEHAVIOR OF [011]MULTIPLE-SLIP-ORIENTED COPPER SINGLE CRYSTALS Ⅱ. Surface Slip Features and Deformation Bands[J]. 金属学报, 1998, 34(5): 552-560.
[12] LI Xiaowu; WANG Zhongguang; SUN Shouguang; WU Shiding;LI Shouxin;LI Guangyi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Mechanical Engineering; Northern Jiaotong University; Beijing 100044). CYCLIC DEFORMATION BEHAVIOR OF [011] MULTIPLE-SLIP-ORIENTED COPPER SINGLE CRYSTALSCyclic Stress-Strain Response[J]. 金属学报, 1998, 34(5): 545-551.
[13] I. Cyclic Deformation Behavior and Slip Morphology HU Yunming; WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy ofSciences; Shenyang 110015) (Manuscript received 1996-09- 12; in revised form 1997-03-07). CYCLIC DEFORMATION BEHAVIOR AND FATIGUE CRACK INIT1ATION IN COPPER BICRYSTALS[J]. 金属学报, 1997, 33(8): 814-823.
[14] GU Yuefeng;LIU Yi;LIN Dongliang(T.L.Lin)(Shanghai Jiaotong University;Shanghai 200030);GUO Jianting(Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015)(Manuscript received 1995-01-13;in revised form 1995-07-03). CYCLIC DEFORMATION BEHAVIOUR OF Ni_3(Al,Zr) SINGLE CRYSTAL AT ROOM TEMPERATURE[J]. 金属学报, 1995, 31(11): 513-518.
[15] GONG Bo; WANG Zhongguang; ZHANG Yiwei; LI Guangyi; ZHANG Tianyi(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang)(Manuscript received 16 March; 1994). CYCLIC DEFORMATION BEHAVIOUR OF Cu SINGLE CRYSTAL ORIENTED FOR DOUBLE SLIPS Ⅰ. Cyclic Hardening and Saturation[J]. 金属学报, 1994, 30(10): 431-438.
No Suggested Reading articles found!