Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (2): 56-63    DOI:
Current Issue | Archive | Adv Search |
DIFFUSION OF BORON IN Fe-BASE AND Ni-BASE ALLOYS
WANG Wendong; ZHANG Sanhong; HE Xinlai(University of Science and Technology Beijing; 100083)(Manuscript received 93-09-21. in revised form 94-01-26)
Cite this article: 

WANG Wendong; ZHANG Sanhong; HE Xinlai(University of Science and Technology Beijing; 100083)(Manuscript received 93-09-21. in revised form 94-01-26). DIFFUSION OF BORON IN Fe-BASE AND Ni-BASE ALLOYS. Acta Metall Sin, 1995, 31(2): 56-63.

Download:  PDF(699KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By means of particle tracking autoradiography (PTA), the diffusion coefficients of B between 900-1200℃ were measured in 04MnNbB steel, 25Mn TiB steel,Ni-B, Fe30% Ni-B and Fe-3% Si-B alloys, and the frequency factor D0 and activation energy Q were obtained respectively. The experimental results indicate that there was an obvious difference between the present result and that obtained by Busby (in 1953). It was found that the B diffusivity in γ-Fe increased as Ni added. The diffusivrty of B in Fe-3% Si-B alloy with bcc structure was much slower than one obtained by Busby in α-Fe(1954), however which was much rapid than the results obtained in γ-Fe(with fcc structure).Correspondent: WANG Wendong, Department of Materials Phvsics, University of Science and TechnologyBeijing, Beijing 100083
Key words:  Fe-alloy. Ni-alloy      B      diffusion coefficient. grain boundary segregation     
Received:  18 February 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I2/56

1BusbyPE,WargaME,WellsC.JMet,1953;5:14632BusbyPE,WellsC.JMet,1954;6:9723BerzinaIG,GusevEB,ZakharovBV.PhysMetMetallogr,1984;57(4):794BerzinaIG,GusevEB,FedinaGN.PhysMetMetallogr,1984;57(5):815MatsumuraH,SakaiK.JApplPhys,1983;54:31066KijekMM,PalmerDW,CantorB.ActaMetall,1986;34:14557褚幼义,季平,柯俊.金属学报,1991:27:B3038ArmijoJS,RosenbaumHS.JApplPhys,1967:38:20649HeXL,ChuYY.JPhysD:ApplPhys,1983;16:114510肖纪美,合金相与相变.北京:冶金工业出版社,1987:18911BrandesEA.SmithellsMetalsReferencebook.London:Butterworths,1983:13-1712章三红.北京科技大学博士学位论文,199113WilliamsTH,StonhamAM,HarriesDR.MetSci,1976;10:1414AustKT,HannemanRE,NiessenP,WestbrookJH.ActaMettall,1968:16:29115贺信莱,褚幼义,张秀林,余宗森,李秋平,尹熙光.金属学报,1977:13:23516贺信莱,褚幼义,柯俊.金属学报,1982;18:117贺信莱,褚幼义,柯俊.金属学报,1982;18:1118KarlssonLActaMetall,1988;36:1319KarlssonL,NordenHActaMetall,1988:36:35
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[8] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[9] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[13] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[14] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[15] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
No Suggested Reading articles found!