Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (9): 427-430    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF CYCLIC STRESS AMPLITUDE AND MEAN STRESS ON HIGH TEMPERATURE FATIGUE LIFE OF Ni_3Al(B)ALLOY
LI Gang (State Key Laboratory of Fatikue and Fracture for Materials; Institute of Metal Research;Chinese Academy.of Sciences;Shenyang);GUO Jianting(Institute of Metal Research;Chinese Academy of Sciences;Shenyang);WANG Zhongguang(State Key Laboratory of Fatigue and Fracture for Materials;Institute of Metal Research;Chinese Academy of Sciences; Shenyang); I Hui; SHI Changxu(Institute of Metal Research; Chinese Academy of Sciences; Shenyang)(Manuscript received 3 November; 1993; in revised form 27 December; 1993)
Cite this article: 

LI Gang (State Key Laboratory of Fatikue and Fracture for Materials; Institute of Metal Research;Chinese Academy.of Sciences;Shenyang);GUO Jianting(Institute of Metal Research;Chinese Academy of Sciences;Shenyang);WANG Zhongguang(State Key Laboratory of Fatigue and Fracture for Materials;Institute of Metal Research;Chinese Academy of Sciences; Shenyang); I Hui; SHI Changxu(Institute of Metal Research; Chinese Academy of Sciences; Shenyang)(Manuscript received 3 November; 1993; in revised form 27 December; 1993). EFFECT OF CYCLIC STRESS AMPLITUDE AND MEAN STRESS ON HIGH TEMPERATURE FATIGUE LIFE OF Ni_3Al(B)ALLOY. Acta Metall Sin, 1994, 30(9): 427-430.

Download:  PDF(278KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  High temperature fatigue properties of a polycrystalline Ni_3Al(0.6at.-%B) alloy, being brittle at an elevated temperature, were studied. The tension-tension fatigue tests under controlled loading were carried out in air at 450 ℃. By fixing the maximum values of tensile stress in all tests but changing the minimum values of tensile stress in various tests, the effect of cyclic stress amplitude or mean stress and their interaction on the damage of materials may be differentiated. The results of cyclic stress amplitude and mean stress vs fatigue life are plotted as"S" shape and interpreted preliminarily.Correspondent: LI Gang, Institule of Metal Research, (Chinese Academy of Sciences, Shenyang 110015)
Key words:  Ni_3Al(B)      cyclic stress amplitude      mean stress      fatigue life     
Received:  18 September 1994     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I9/427

1青木清,和泉修,日本金属学会志1979;43:11902StoloffNS,FuchsGE,KuruvillaA,ChoeSJ.In:StoloffNSetaleds,HighTemperatureOrderedIntermetallicAlloysII,MaterResSocSympProc,1987;81:2473HemkerKJ,MillsMJ,NixWD.ActaMetallMater,1991;39:l9014BellowsRS,SchwarzkopfEA,TienJK.MetallTrans,1988;19A:4795TienJK,BellowsRS.In:KochCCetaleds,HighTemperatureOrderedIntermetallicAlloysIII,MaterResSocSympProc,1989;133:255
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[3] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[4] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[5] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[6] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[7] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[9] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[10] XIONG Ying CHENG Lixia . MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(12): 1446-1452.
[11] CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. 金属学报, 2009, 45(7): 856-860.
[12] XIAO Lin; GU Haicheng(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong Universityl Xi'an 710049). THE RELATIONSHIP BETWEEN PLASTIC DISSIPATED ENERGY, FRACTAL DIMENSION AND FATIGUE- LIFETIME OF ZIRCONIUM AND ZIRCALOY-4[J]. 金属学报, 1998, 34(7): 705-712.
[13] ZHANG Zhefeng; LI Guangyi; WANG Zhongguang; LI Shouxin (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE LIVES OF GRAIN BOUNDARY AND COMPONENT CRYSTALS IN A COPPER BICRYSTAL[J]. 金属学报, 1998, 34(1): 51-56.
[14] DING Chuanfu;YU Hui; WU Xueren (Beijing Institute of Aeronautical Materials;Beijing 100095). GROWTH BEHAVIOUR OF SMALL FATIGUE CRACK AND FATIGUE-LIFE PREDICTION FOR HIGH-STRENGTH STEEL 30CrMnSiNi2A[J]. 金属学报, 1997, 33(3): 277-286.
[15] XU Songbo;CHEN Junming (Shanghai Institute of Metallurgy; Chinese Academy of Sciences)(Manuscript received 5 July; 1993; in revised form 6 September 1993). AN IMPROVEMENT OF ROOM TEMPERATURE DUCTILITY OF Ni_3Al(B)-Cr BASE ALLOYS BY MULTI-ALLOYING OF Mg AND RE[J]. 金属学报, 1994, 30(5): 221-224.
No Suggested Reading articles found!