Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (8): 42-48    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF ORIENTATION ON STRESS RESPONSE, FRICTION STRESS AND BACK STRESS DURING CYCLIC DEFORMATION IN AI SINGLE CRYSTALS.
XIA Yuebo; ZHANG Tianyi (State Key Laboratory for Fracture and Failure of Materials; Institute of Metal Research; Academia Sinica; Shenyang) DENG Jun (Shenyang Polytechnical University)
Cite this article: 

XIA Yuebo; ZHANG Tianyi (State Key Laboratory for Fracture and Failure of Materials; Institute of Metal Research; Academia Sinica; Shenyang) DENG Jun (Shenyang Polytechnical University). EFFECT OF ORIENTATION ON STRESS RESPONSE, FRICTION STRESS AND BACK STRESS DURING CYCLIC DEFORMATION IN AI SINGLE CRYSTALS.. Acta Metall Sin, 1992, 28(8): 42-48.

Download:  PDF(1037KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The symmetrical push-pull fatigue tests at strain of 2×10~(-3) for different slip orientation A1 single crystals, 99.999% purity, were carried out at room temperature in air on 5 kN Shimadsu 4825 servo-hydrauhc machine. The peak stresses of various cycles were measured by a digit voltmeter and the stress-strain hysteresis loops for selected cycles were recorded using an X-Y recorder. The energy losses, friction stresses, back stresses and shape parameters of hysteresis loops were measured from the hysteresis loops obtained. The morphology of fatigued specimen surfaces was observed under SEM. The results found that the parameters above are affected awfully by the orientation of crystals. The crystals with multiple.slip orientation, in comparison with single one, are of numerous initial hardenability, saturated stresses and energy losses, while the hysteresis loops shape of single slip orientation crystals become even more rectangular. The relation among parameters above mentioned and contact between them and internal structure of the materials were discussed in belief.
Key words:  crystal orientation      cyclic deformation      stress response      energy loss      slip morphology     
Received:  18 August 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I8/42

1 Laird C, Charsley P, Mughrabi H. Mater Sci Eng, 1986; 81: 433
2 Mughrabi H. Mater Sci Eng, 1978; 33: 207
3 Cheng A S, Laird C. Mater Sci Eng, 1981; 51: 111
4 Abel A, Wilkelm M, Gerold V. Mater Sci Eng, 1979; 37: 187
5 Vorren O, Ryum N. Acta Metall, 1988; 36: 1443
6 Chicois J, Fougeres R, Guichon G, Hamel A, Vincent A. Acta Metall, 1986; 34: 2157
7 陈贤芬,林栋梁.金属学报,1984;20:A169
8 Vorren O, Ryum N. Acta Metall, 1987; 35:855
9 Xia Y B, Wang Z G, Wang R H. Phys Status Solidi, 1990; a120: 125
10 Winter A T. Philos Mag, 1974; 30:719
11 Finney J M, Laird C. Philos Mag, 1978; 33:207
12 Kuhlmann-Wilsdorf D, Laird C. Mater Sci Eng, 1979; 37: 111
13 Jin N Y. Acta Metall, 1989; 37: 2055
14 Yamamoto A, Imura T. In: Ashby M F, Bullough R, Hartley C S, Hirth J P eds., Dislocation Modelling of Physical Systems, Proc Int Conf, Gainesville, Florida, June 22-27, 1980, Oxford: Pergamon, 1981w
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[3] SUN Heng,LIN Xiaoping,ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun. Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. 金属学报, 2020, 56(3): 340-350.
[4] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[5] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[6] Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. 金属学报, 2015, 51(10): 1273-1278.
[7] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[8] ZHANG Siqian, WU Wei, CHEN Lili, CHE Xin, CHEN Lijia. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY[J]. 金属学报, 2014, 50(6): 700-706.
[9] LIU Fencheng, LIN Xin, YU Xiaobin, HUANG Chunping, HUANG Weidong. EVOLUTION OF INTERFACE AND CRYSTAL ORIENTATION OF LASER SOLID FORMED GH4169 SUPERALLOY DURING RECRYSTALLIZATION[J]. 金属学报, 2014, 50(4): 463-470.
[10] CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. 金属学报, 2009, 45(7): 856-860.
[11] JIANG Qingwei LIU Yin WANG Yao CHAO Yuesheng LI Xiaowu . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING[J]. 金属学报, 2009, 45(7): 873-879.
[12] JIA Yuxian JIN Tao LIU Jinlai SUN Xiaofeng HU Zhuangqi. ANISOTROPIC CREEP IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2009, 45(11): 1364-1369.
[13] ;. FINITE ELEMENT SIMULATION FOR CYCLIC DEFORMATION OF SiCP/6061Al ALLOY COMPOSITES[J]. 金属学报, 2006, 42(10): 1051-1055 .
[14] YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun. Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52[J]. 金属学报, 2005, 41(4): 357-362 .
[15] YANG Jihong; ZHANG Xinping; Y. W. MAI; LI Yong. Simulation Of Internal~ Stresses~ Near The Surface And Fatigue Crack Nucleation For A Copper Single Crystal In Cyclic Deformation Saturation Stage[J]. 金属学报, 2005, 41(1): 9-.
No Suggested Reading articles found!