Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (1): 26-31    DOI:
Current Issue | Archive | Adv Search |
SLIP SYSTEMS AND DISLOCATION DISTRIBUTION CHARACTERISTICS IN α-PHASE OF SUPERPLASTICALLY DEFORMED Ti-6Al-4V ALLOY
ZHAO Linruo;ZHANG Shaoqing;YAN Minggao Beijing Institute of Aeronautical Materials Lab. NoA; Beijing Institute of Aeronauticol Materials;Beijing 100095
Cite this article: 

ZHAO Linruo;ZHANG Shaoqing;YAN Minggao Beijing Institute of Aeronautical Materials Lab. NoA; Beijing Institute of Aeronauticol Materials;Beijing 100095. SLIP SYSTEMS AND DISLOCATION DISTRIBUTION CHARACTERISTICS IN α-PHASE OF SUPERPLASTICALLY DEFORMED Ti-6Al-4V ALLOY. Acta Metall Sin, 1990, 26(1): 26-31.

Download:  PDF(2892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The activated slip systems in the α-phase of the superplastically de-formed Ti-6Al-4V alloy were analysed by systematic operation method with TEM.The results show that the dominantly activated slip systems in the α-phase are{0110} <21l0> and {0111} <2110>. The {0001} <2110> system as well as the c+αdislocations of b=1/3<1133> will be activated when the deformation temperatureis lowered. Large amounts of TEM observation indicate that the dislocations in theα-phase were mainly activated near the triple grain boundary junctions, α/α grainboundaries, and α/β interfaces.
Key words:  Ti-6Al-4V alloy      plastic deformation      dislocation     
Received:  18 January 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I1/26

1 Falk L K L, Howell P R, Dunlop G L, Langdon T G. Acta Metall, 1986; 34: 1203
2 Arieli A, Mukherjee A K. Mater Sci Eng, 1980; 45: 61
3 Gifkins R C. In: Paton N E, Hamilton C H eds. Superplastic Forming of Structural Alloys, TMSAIME, 1982: 519
4 Kashyap B P, Mukherjee A K. In: Bandlet B, Suery M eds., Superplasticity, Paris: CNRS, 1985: 41
5 Paton N E, Williams J C, Rauscher G P. In: Jaffee R I, Burte H M eds, Titanium Science and Technology, Vol. Ⅱ, New York: Plenum, 1973: 1049
6 Williams D N, Eppelsheimer D S. J Inst Met, 1952/53; 81: 553
7 Ashby M F. Philos Mag, 1970; 21(170) : 399
8 Ball A, Hutchison M M. Met Sci J, 1969; 3: 1%
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[4] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[9] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[10] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[12] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[13] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[14] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[15] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
No Suggested Reading articles found!