Please wait a minute...
Acta Metall Sin  1989, Vol. 25 Issue (2): 89-94    DOI:
Current Issue | Archive | Adv Search |
THREE-DIMENSIONAL MATHEMATICAL MODELING OF TRANSPORT PROCESSES IN CVD REACTORS
HE Youduo;Y. SAHAI Baotou Institute of Iron and Steel Technology The Ohio State University; USA
Cite this article: 

HE Youduo;Y. SAHAI Baotou Institute of Iron and Steel Technology The Ohio State University; USA. THREE-DIMENSIONAL MATHEMATICAL MODELING OF TRANSPORT PROCESSES IN CVD REACTORS. Acta Metall Sin, 1989, 25(2): 89-94.

Download:  PDF(510KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A mathematical model to represent the fluid flow, temperature distri-bution and mass transfer in CVD reactors has been developed. The model is usedto predict the velocity, temperature, and molar concentration profiles in the taper-ed annulus of a reactor for silicon deposition from SiCl_4 in H_2. Results of theinvestigation contribute to the understanding of the transport processes involved insuch a system. The model can also be used for optimizing the design parameters,such as inlet flow rate, susceptor tilt angle, etc.
Key words:  reactor of chemical vapor deposition      velocity field      temperature field      rate of Si deposition     
Received:  18 February 1989     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1989/V25/I2/89

1 Eversteijn F C, Severin P J W, Van Den Brekel C H J, Peek H L. J Electrochem Soc, 1970; 117: 925
2 Eversteijn F C, Peek H L. Philips Res Rep, 1970; 25: 472
3 Ban V S, Gilbert S L. J Cryst Growth, 1975; 31: 284
4 Ban V S. J Cryst Growth, 1978; 45: 97
5 Rundle P C. Int J Electron, 1968; 24: 405
6 Rundle P C. J Cryst Growth, 1971; 11: 6
7 Takahashi R, Koga Y, Sugawara K. J Electrochem Soc, 1972; 119: 1406
8 Fujii E, Nakamura H, Hariuma K, Koga Y. J Electrochem Soc, 1972; 119: 1106
9 Manke C W, Donaghey L F. J Electrochem Soc, 1977; 124: 561
10 Manke C W, Donaghey L F. Proc 6th Int Conf on Chemical Vapor Deposition, Princeton: The Electrochemical Society, 1977: 151
11 Juza J, Cermak J. J Electrochem Soc, 1982; 129: 1627
12 Curtis R J, Dismukes J P. Proc 4th Int Conf on Chemical Vapor Deposition, Princeton: The Electrochemical Society, 1973: 218
13 Sparrow E M, Eichorn R. Gregg J L. Phys Fluids, 1959; 2: 319
14 Ban V S. J Electrochem Soc, 1978; 125: 317
15 Hanzawa T, Sakanchi K, Sato K, Tadaki T. J Chem Eng Jpn, 1977; 10: 313
16 Shaw D W. In: Gordon C H L ed, Crystal Growth: Theory and Techniques, Vol. Ⅰ, London-New York: Plenum Press, 1974
17 Sirtl E, Hunt L P, Sawyer D H. J Electrochem Soc, 1974; 127: 17
18 Gosman A D, Launder B E. TEACH-2E. Internal Report, Mech Eng Dept, Imperial College, University of London, 1976
19 Youduo HE (贺友多), Sahai Y. Metall Trans, 1987; 18B: 81
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[4] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[6] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[7] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[8] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[9] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[10] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[11] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[12] Qiaodan Hu; Peng Luo; Jianguo Li. FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE[J]. 金属学报, 2008, 44(10): 1253-1259 .
[13] . Numerical Simulation of two-phase Solidification Process of[J]. 金属学报, 2007, 43(6): 668-672 .
[14] XiaoSong Feng. TEMPERATURE FILED SIMULATION OF LASER BRAZING FOR GALVANIZED STEEL SHEETS[J]. 金属学报, 2006, 42(8): 882-886 .
[15] . Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)[J]. 金属学报, 2006, 42(5): 449-453 .
No Suggested Reading articles found!