Please wait a minute...
Acta Metall Sin  1989, Vol. 25 Issue (2): 45-50    DOI:
Current Issue | Archive | Adv Search |
CYCLIC DEFORMATION OF Nb SINGLE CRYSTALS
LIN Dongliang;WU Jiansheng;CHEN Xianfen T. L. Lin Shanghai Jiaotong University
Cite this article: 

LIN Dongliang;WU Jiansheng;CHEN Xianfen T. L. Lin Shanghai Jiaotong University. CYCLIC DEFORMATION OF Nb SINGLE CRYSTALS. Acta Metall Sin, 1989, 25(2): 45-50.

Download:  PDF(1625KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Nb single crystals of both [321] and [110] orientations have been cy-clicly deformed in tension-compression at constant strain rate 8×10~(-4)s~(-1) over arange of plastic strain amplitudes between 10~(-3) and 10~(-4). The cyclic hardening, thechanges in shape of crystals and the asymmetry of stress have been studied. Thehardening curve can be divided into three stages, i. e. first, rapid-hardening andsaturated stage. In the first stage of cyclic hardening curve dominant features of dislocationconfigurations are high density networks and debris loops. In the rapid-hardeningstage the main feature is the formation of dislocation bundles. In the saturateda well defined bundle structure fully develops and between them it is filled withonly screw disloca tions and the imposed strain is accommodated mainly bythe motion of screw dislocations travelling to and from between the bundles.Three-dimention cell, two-dimention cell or bundle structures are summarized as thesaturated structures of bcc metals.
Key words:  Nb single crystal      cyclic deformation      dislocation     
Received:  18 February 1989     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1989/V25/I2/45

1 Laird C. Fatigue and Microstructure, Ohio: American Society for Metals, 1978; 149
2 Mughrabi H. Mater Sci Eng, 1978; 33: 207
3 Mughrabi H, Herz K, Stark X. Int J Fract. 1981; 17: 193
4 Mughrabi H, Herz K, Stark X. Acta Metall. 1976; 24: 659
5 肖德傅,李长英,应铁如,黄春祥,陈贤芬,吴建生,林栋梁.上海金属(有色分册),1983;4(2) :11
6 Chang L N, Taylor G, Christian J W. Acta Metall, 1983; 31: 37
7 Vitek V. Cryst Lattice Defects, 1974; 5: 1
8 Mori H, Tokuwame M, Miyazaki T. Philos Mag, A, 1979; 40: 409
9 Kuhlmann-Wilskorf D. Phys Status Solidi, (a) 1978; 47: 639
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[3] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[13] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
No Suggested Reading articles found!