Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (6): 379-385    DOI:
Current Issue | Archive | Adv Search |
PHASE TRANSFORMATION UNIT OF BAINITIC FERRITE AND ITS SURFACE RELIEF IN LOW AND MEDIUM CARBON ALLOY STEELS
YU Degang;CHEN Dajun;ZHENG Jinghong;HE Yirong;SHEN Fufa Shanghai Jiaotong University
Cite this article: 

YU Degang;CHEN Dajun;ZHENG Jinghong;HE Yirong;SHEN Fufa Shanghai Jiaotong University. PHASE TRANSFORMATION UNIT OF BAINITIC FERRITE AND ITS SURFACE RELIEF IN LOW AND MEDIUM CARBON ALLOY STEELS. Acta Metall Sin, 1988, 24(6): 379-385.

Download:  PDF(2162KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The lath-or plate shaped bainitic ferrite of low and medium carbonalloy steels consists of packets of ferrite sublaths which are composed of manyfiner and regular ferrite blocks. They are uniform shear growth units of bainiticferrite phase transformation. No carbide is precipitated from them. The bainitic θ-carbides are precipitated from γ-α interface or carbon-rich austenite. The mode ofarrangement of the units in ferrite sublath packet is in uni- or bi-direction. Singlesurface relief is produced by the accumulation of uniform shear strains of all theferrite units arranged unidirectionally in a sublath packet, while tent-shaped surfacerelief is formed by the integration of the uniform shear strains of two groups withferrite units piling up in two-directions growing face to face; whereas if they growback to back, the integration will be responsible for inverttent-shaped surfacerelief. The interface trace between two groups of ferrite units in a sublath packetis shown as "midrib".
Key words:  low and medium carbon alloy steel      bainite      ferrite      phase transformation unit      surface relief     
Received:  18 June 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I6/379

1 Hehemann R F, Kinsman K R, Aaronson H I. Metall Trans, 1972; 3: 1077
2 Bhadeshia H K D H, Edmonds D V. Acta Metall, 1980; 28: 1265
3 Bhadeshia H K D H. Scr Metall, 1980; 14: 821
4 Aaronson H I. Scr Metall, 1980; 14: 815
5 王世道,俞德刚,Fe-C合金贝氏体相变热力学研究(待发表)
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[5] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[6] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[7] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[9] Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. 金属学报, 2019, 55(8): 951-957.
[10] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[11] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[12] Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview[J]. 金属学报, 2018, 54(2): 217-227.
[13] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[14] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
[15] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
No Suggested Reading articles found!