Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 447-453    DOI: 10.3724/SP.J.1037.2013.00672
Current Issue | Archive | Adv Search |
EFFECT OF TEMPERING TEMPERATURE ON CARBIDE AND MECHANICAL PROPERTIES IN A Fe-Cr-Ni-Mo HIGH-STRENGTH STEEL
WEN Tao, HU Xiaofeng, SONG Yuanyuan, YAN Desheng, RONG Lijian()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WEN Tao, HU Xiaofeng, SONG Yuanyuan, YAN Desheng, RONG Lijian. EFFECT OF TEMPERING TEMPERATURE ON CARBIDE AND MECHANICAL PROPERTIES IN A Fe-Cr-Ni-Mo HIGH-STRENGTH STEEL. Acta Metall Sin, 2014, 50(4): 447-453.

Download:  HTML  PDF(3847KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The variation of carbides with tempering temperature in a Fe-Cr-Ni-Mo high-strength steel and their effect on mechanical properties are investigated by means of TEM and three-dimensional atom probe (3DAP). The results show that there mainly appear M3C and M7C3 when tempering temperature is rather low (400 ℃), the former is thick with a length of about 1 μm and the latter is fine and the length is less than 200 nm, and M is composed of Fe, Cr and Mn. Tempering at 500 and 600 ℃, the amount of carbide increases gradually, and there appear M2C and M6C types of carbide which are both less than 200 nm in length, simultaneously M3C becoming fine or disappear. When tempering temperature further increases to 650 ℃, besides M2C there also appears MC type of carbide. The size of both M2C and MC are less than 100 nm, meanwhile the amount of carbide decreases. The M of M2C, M6C and MC is a combination mainly of Cr, Mo and V. The strength of the Fe-Cr-Ni-Mo high-strength steel gradually reduces with increasing tempering temperature, but the downtrend of strength is rather small when tempering temperature is in the range of 500~600 ℃, owing to secondary hardening induced by the appearance of V-carbide. In short, the high-strength steel could obtain better combination of strength and impact toughness after tempering at about 530~600 ℃.

Key words:  Fe-Cr-Ni-Mo      high-strength steel      carbide      tempering temperature      impact toughness at low- temperature     
Received:  23 October 2013     
ZTFLH:  TG161  
Fund: Supported by National Natural Science Foundation of China (No.91226204)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00672     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/447

Fig.1  

回火温度对Fe-Cr-Ni-Mo高强钢强度和延伸率的影响

Fig.2  

回火温度对Fe-Cr-Ni-Mo高强钢低温(-50 ℃)冲击吸收功的影响

Fig.3  

不同温度回火后Fe-Cr-Ni-Mo高强钢中碳化物的TEM像和SAED谱

Tempera-
ture / ℃
Type Size / nm Alloying element
R S1 S2 R S1 S2 R S1 S2
400 M3C M7C3 M7C3 1000 150 20~50 Fe, Cr, Mn Fe, Cr, Mn Fe, Cr, Mn
500 M3C M7C3 M2C 800 150 20~50 Fe, Cr, Mn Fe, Cr, Mn, Mo Fe, Cr, Mn, Mo
600 M2C M6C 150~200 20~50 Fe, Cr, Mo, V Fe, Cr, Mo, V
650 M2C MC 80~100 50~80 Fe, Cr, Mo, Mn, V Fe, Cr, Mo, Mn, V
表1  不同回火温度所对应的碳化物的类型、尺寸及成分
Fig.4  

600 ℃回火2 h后碳化物形成元素的3D空间分布及浓度分布

[1] Misra R D K, Jia Z, Malley R O, Jansto S J. Mater Sci Eng, 2011; A528: 8772
[2] Lee K H, Park S G, Kim Min C, Lee B S, Wee D M. Mater Sci Eng, 2011; A529: 156
[3] Lee B S,Kim M C,Yoon J H,Hong J H. Int J Press Ves Pip, 2010; 87: 74
[4] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K, Lee S, Kim N J. Metall Mater Trans, 2009; 40A: 1851
[5] Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578
(王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
[6] Michael D M, David N S. Acta Mater, 2011; 59: 1881
[7] Takashi O, Takashi W, Masanori A, Kazumi A. Nucl Eng Des, 2008; 238: 408
[8] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786
(刘庆东, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)
[9] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
(刘庆东, 楮于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44: 1281)
[10] Zhang Y. PhD Dissertation, Dalian Maritime University, 2007
(张 洋. 大连海事大学博士学位论文, 2007)
[11] Zhang S H. Alloy-Steel. Beijing: Metallurgical Industry Press, 1981: 10, 37
(章守华. 合金钢. 北京: 冶金工业出版社, 1981: 10, 37)
[12] Qi Z F. Diffusion and Phase Transition in Solid Metals. Beijing: China Machine Press, 1998: 201
(戚正风. 固态金属中的扩散与相变. 北京: 机械工业出版社, 1998: 201)
[13] Janovec J, Vyrostkova A, Svoboda M. Metall Mater Trans, 1994; 25A: 267
[14] Tao P, Zhang C, Yang Z G, Takeda H. Acta Metall Sin, 2009; 45: 51
(陶 鹏, 张 弛, 杨志刚, 武田裕之. 金属学报, 2009; 45: 51)
[15] Bjarbo A, Hattestrand M. Metall Mater Trans, 2001; 32A: 19
[16] Pigrova G D. Metall Mater Trans, 1996; 27A: 498
[17] Sun S W, Mao J F, Lei T Q, He L L. Acta Metall Sin, 2000; 36: 1009
(孙树文, 茅建富, 雷廷权, 贺连龙. 金属学报, 2000; 36: 1009)
[18] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
(刘庆东, 彭建超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[19] Sun S W, Lei T Q, Tang Z X, You G, Wang X, Chen J L. Iron Steel, 1998; 33: 38
(孙树文, 雷廷权, 唐之秀, 犹 公, 王 欣, 陈家伦. 钢铁, 1998; 33: 38)
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[4] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] WANG Zhanhua, HUI Weijun, XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. 金属学报, 2020, 56(11): 1441-1451.
[7] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[8] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[9] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[10] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[11] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
[12] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[13] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[14] Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI. Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690[J]. 金属学报, 2018, 54(3): 404-410.
[15] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
No Suggested Reading articles found!