Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1558-1566    DOI: 10.3724/SP.J.1037.2013.00301
Current Issue | Archive | Adv Search |
EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C—Mn—Si STEEL
REN Yongqiang, XIE Zhenjia, ZHANG Hongwei, YUAN Shengfu, SONG Tingting, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing 100083
Cite this article: 

REN Yongqiang, XIE Zhenjia, ZHANG Hongwei, YUAN Shengfu, SONG Tingting, SHANG Chengjia. EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C—Mn—Si STEEL. Acta Metall Sin, 2013, 49(12): 1558-1566.

Download:  PDF(2302KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of different precursor microstructure on the morphology and mechanical properties of the 0.22C—1.9Mn—1.32Si multiphase steel which was obtained by the treatment of intercritical reheating—quenching and partitioning (IQ&P) heat treatment were examined. Under the same IQ&P heat treatment parameters, multiphase microstructure which contains lath—like ferrite matrix and film or short needle—like retained austenite can be obtained by the martensite (M) precursor steel; while multiphase steel which has a bainite—ferrite (B—F) precursor can obtain a microstructure of equiaxed—like ferrite matrix and particale like retained austenite. After the IQ&P process, tensile strength of the multiphase steel which has a B—F precursor is up to 976 MPa, but elongation of this kind of steel is only 26.7%, and thus the product of strength and elongation of this kind of steel is only 26 GPa•%; while multiphase steel which has a M precursor has realized the combined properties of high strength and excellent ductility, product of strength and elongation of this kind of steel reaches 31 GPa•%. As for the work hardening behavior of the uniform elongation stage, although B—F precursor multiphase steel has a higher work hardening index n than the M precursor multiphase steel, stability of the retained austenite in this kind of steel is relatively poor, variation behavior curve of the instantaneous n value with true strain for this kind of steel shows a notched—like shape; as for the multiphase steel which has a M precursor, retained austenite in this kind of steel is relatively stable, variation behavior curve of the instantaneous n value with true strain for this kind of steel is much more steady, which shows a trend of gradual increasing. The reason for the different tensile testing and work hardening results above is related to the morphology, proportion and distribution state of the retained austenite and matrix microstructures, which is due to the effect of different morphology and microstructure characteristics of the precursor phases by the roots.

Key words:  IQ&P process      multi—phase steel      retained austenite      instantaneous work hardening index     
Received:  31 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00301     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1558

[1] Speich G R, Demarest V A, Miller R L.  Metall Trans, 1981; 12A: 1419

[2] Takashi F, Hirofumi M, Michio E, Hiroshi T, Kazuo K, Osamu A, Teruaki Y.Trans ISIJ, 1981; 21: 812
[3] Matsumura O, SakumaY, Takechi H.  Scr Metall, 1987; 21: 1301
[4] Matsumura O, SakumaY, Takechi H.  ISIJ Int, 1992; 32: 1014
[5] Sugimoto K, Misu M, Kobayashi M, Shirasawa H.  ISIJ Int, 1993; 33: 775
[6] Speer J G, Matlock D K, De Cooman B C, Schroth J G.  Acta Mater, 2003; 51: 2611
[7] Speer J G, Edmonds D V, Rizzo F C, Matlock D K.  Curr Opin Solid State Mater Sci, 2004; 8: 219
[8] Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G.Mater Sci Eng, 2006; A438—440: 25
[9] De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G.  Metall Mater Trans, 2008; 39A: 2586
[10] Liu H P, Lu X W, Jin X J, Dong H, Shi J.  Scr Mater, 2011; 64: 749
[11] Paravicini B E, Santofimia M J, Zhao L, Sietsma J, Anelli E.  Mater Sci Eng, 2013; A559: 486
[12] Santofimia M J, Nguyen—Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J.Mater Sci Eng, 2010; A527: 6429
[13] Maruyama H.  J Jpn Soc Heat Treat, 1977; 17: 198
[14] Nishiyama Z.   Martensitic Transformations. New York: Academic Press, 1978: 60
[15] Sugimoto K, Usui N, Kobayashi M, Hashimoto S.  ISIJ Int, 1992; 32: 1311
[16] Chiang J, Lawrence B, Boyd J D, Pilkey A K.  Mater Sci Eng, 2011; A528: 4516
[17] Santofimia M J, Zhao L, Sietsma J.  Metall Mater Trans, 2009; 40A: 46
[18] Sakuma Y, Matlock D K, Krauss G.  Metall Trans, 1992; 23A: 1221
[19] Kim S J, Lee C G, Choi I, Lee S.  Metall Mater Trans, 2001; 32A: 505
[20] Ren Y Q, Xie Z J, Shang C J.  Acta Metall Sin, 2012; 48: 1074
(任勇强, 谢振家, 尚成嘉.金属学报, 2012; 48: 1074)
[21] Dieter G E.  Mechanical Metallurgy. 2nd Ed., New York: McGraw—Hill Book Company, 1988: 87
[22] Jacques P, Cornet X, Harlet P, Ladri$\grave{\rm e$re J, Delannay F.  Metall Mater Trans, 1998; 29A: 2383
[23] Yakubovsky O, Fonstein N, Bhattacharya D. In: De Cooman B C ed.,Proceedings Conference Trip—Aided High Strength Ferrous Alloys,Aachen: Wissenschaftsverlag Mainz Gmbh, 2002: 263
[24] Mahieu J, Maki J, De Cooman B C, Claessens S.  Metall Mater Trans, 2002; 33A: 2573
[25] Bai D Q, Chiro A D, Yue S.  Mater Sci Forum, 1998; 284—286: 253
[26] Wang J, Van Der Zwaag S.  Metall Mater Trans, 2001; 32A: 1527
[27] Pereloma E V, Timokhina I B, Hodgson P D.  Mater Sci Eng, 1999; 273—275: 448
[28] Baik S C, Park S H, Kwon O, Kim D I, Oh K H.  ISIJ Int, 2006; 46: 599
[29] Thierry I, Jos$\acute{\rm e$e D, Audrey C, Christopher O.  Steel Res, 2002; 6—7: 218
[30] Kwon E P, Fujieda S, Shinoda K, Suzuki S.  Mater Sci Eng, 2011; A528: 5007
[31] Ryde L.  Mater Sci Technol, 2006; 22: 1297
[32] Xiong X C, Chen B, Huang M X, Wang J F, Wang L.  Scr Mater, 2013; 68: 321
[33] Tsukatani I, Hashimoto S I, Inoue T.  ISIJ Int, 1991; 31: 992
[34] Sugimoto K I, Misu M, Kobayashi M, Shirasawa H.  ISIJ Int, 1993; 33: 775
[1] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[2] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[3] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[4] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[5] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[6] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[7] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[8] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[9] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[10] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[11] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[12] Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. 金属学报, 2015, 51(5): 527-536.
[13] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[14] ZHOU Wenhao, XIE Zhenjia, GUO Hui, SHANG Chengjia. REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY[J]. 金属学报, 2015, 51(4): 407-416.
[15] JU Biao, WU Huibin, TANG Di, PAN Xuefu. EFFECT OF MICROSTRUCTURE EVOLUTION ON MECHANICAL PROPERTIES OF ULTRA-HIGH STRENGTH WEAR RESISTANCE STEEL[J]. 金属学报, 2014, 50(9): 1055-1062.
No Suggested Reading articles found!