Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 407-416    DOI: 10.11900/0412.1961.2014.00576
Current Issue | Archive | Adv Search |
REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY
ZHOU Wenhao(), XIE Zhenjia, GUO Hui, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHOU Wenhao, XIE Zhenjia, GUO Hui, SHANG Chengjia. REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY. Acta Metall Sin, 2015, 51(4): 407-416.

Download:  HTML  PDF(12510KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low carbon and low alloy steels require good combination of strength and ductility to ensure safety and stability of structures. Heat treatment in intercritical area can not only produce multi-phase microstructure, but also lead to the redistribution of alloying elements in different phases. Multi-step intercritical heat treatment is favorable to obtain retained austenite that is stabilized by repeated enrichment of alloying elements in reversed austenite and nanometer-sized precipitate that are primarily formed during tempering. Excellent mechanical properties are contributed by transformation-induced-plasticity effect of retained austenite and precipitation hardening effect of nanometer-size precipitates. In this work, the microstructural evolution and relative mechanical properties were investigated in a low carbon low alloy steel processed by a three-step heat treatment, namely, intercritical annealing, intercritical tempering and tempering. The microstructure was a typical dual-phase microstructure consisting of intercritical ferrite and bainite/martensite after intercritical annealing, and primarily comprised of intercritical ferrite, tempered bainite/martensite and retained austenite after intercritical tempering. Retained austenite with volume fraction of 29% distributed at the ferrite/bainite (martensite) boundaries and betweent bainitic/martensitic laths. Retained austenite was stabilized by enrichment of C, Mn, Ni and Cu in reversed austenite during the reversion transformation process. NbC precipitates with average size of 10 nm was formed in ferrite matrix and bainite/martensite, while Cu-containing particles in size range of 10~30 nm precipitated in ferrite and retained austenite during intercritical tempering and tempering process. The morphology of NbC precipitates was spherical, elliptical and irregular, and copper precipitates were spherical. With the combination of transformation-induced-plasticity (TRIP) effect of retained austenite and precipitation hardening, the steel possessed outstanding mechanical properties: yield strength > 700 MPa, tensile strength > 900 MPa, uniform elongation > 20%, and total elongation > 30%.

Key words:  high performance      intercritical heat treatment      multi-phase microstructure      retained austenite      nanometer-sized precipitate     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00576     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/407

Fig.1  Schematic of heat treatment of the experimental steel (Ac1 and Ac3 are transformation start and finish temperatures from bcc to fcc during the reheating process, respectively. Ac1' and Ac1" are transformation start temperatures from bcc to fcc during the reheating process after the first- and second-step heat treatment, respectively)
Fig.2  Determination of critical point of experimental steel in different heat treatment process by dilatometric method
Fig.3  OM images of experimental steels processed after different heat treatments with air cooling
Fig.4  SEM images of experimental steels after different heat treatments with air cooling
Sample ss / MPa sb / MPa Ag / % A / %
Hot rolling 663 1015 6.3 17
A 686 1178 6.3 17
B 707 845 22.8 35
C 724 923 20.8 31
Table 1  Mechanical properties of experimental steels after different heat treatment steps
Fig.5  EBSD images of retained austenite in sample A (a), sample B (b) and sample C (c), and corresponding XRD spectra (d)
Fig.6  Bright (a) and dark (b) field TEM images of sample B
Fig.7  TEM images (a, c, e) and statistical size analysis (b, d, f) of carbon replica extraction indicating the distribution of Nb-containing precipitates in hot-rolled sample (a, b), sample A (c, d) and sample B (e, f)
Temperature / ℃ Phase Volum fraction / % Mass fraction / % Ms / ℃
C Mn Ni Cu
780 Austenite 45.0 0.2 3.1 1.4 1.4 333
Ferrite 55.0 - 1.2 0.7 0.6 -
660 Austenite 37.9 0.5 6.1 2.6 1.7 120
Ferrite 61.5 - 1.2 0.7 0.4 -
Cu 0.6 - 2.0 - 96.9 -
Table 2  Distribution of alloying elements in different phases in experimental steel annealed at 780 ℃ and tempered at 660 ℃ for 30 min at equilibrium state
Fig.8  TEM image (a) and statistical size analysis (b) of copper-containing precipitates in sample B, TEM images (c~e) and EDS (f) of Cu-containing precipitates in sample C
<table border="1" id="tb_80006AA6" align=""> <tr> <td height="75.59055118110237" id="tc_80006AA8">

Temperature

</td> </tr> </table>
Diffusion coefficient / (cm2·s-1) Diffusion distance / nm
C Mn Ni Cu C Mn Ni Cu
780 6.5×10-7 3.9×10-12 3.1×10-12 2.6×10-12 4.8×105 1185 1050 970
660 1.9×10-7 12.5×10-14 2.5×10-14 4.0×10-14 2.6×105 212 95 120
500 2.1×10-8 2.5×10-16 3.6×10-17 2.0×10-17 8.8×104 10 4 3
Table 3  Diffusion distances of austenite stabilizers elements at different temperatures (2D space)
[1] Dong H, Wang M Q, Weng Y Q. Iron Steel, 2010; 45(7): 3
(董 瀚, 王毛球, 翁宇庆. 钢铁, 2010; 45(7): 3)
[2] Liu L, Yang Z G, Zhang C, Liu W B. Mater Sci Eng, 2010; A527: 7205
[3] Yoo J D, Hwang S W, Park K T. Mater Sci Eng, 2009; A508: 234
[4] Misra R D K, Challa V S A, Venkatsurya P K C, Shen Y F, Somani M C, Karjalainen L P. Acta Mater, 2015; 84: 339
[5] Lee T, Koyama M, Tsuzaki K, Lee Y H, Lee C S. Mater Lett, 2012; 75: 169
[6] Sugimoto K I, Mobayashi M, Hashimoto S I. Metall Mater Trans, 1992; 23A: 3085
[7] Sugimoto K I, Tsunezawa M, Hojo T, Ikeda S. ISIJ Int, 2004; 44: 1608
[8] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[9] Misra R D K, Zheng H, Wu K M, Karjalainen L P. Mater Sci Eng, 2013; A579: 188
[10] Kang J, Zhou X G, Wang G D. Steel Rolling, 2009; 26(3): 34
(康 健, 周晓光, 王国栋. 轧钢, 2009; 26(3): 34)
[11] Miller R L. Metall Trans, 1972; 3: 905
[12] Niikura M, Morris J W. Metall Trans, 1980; 11: 1531
[13] Luo H W, Shi J, Wang C, Cao W Q, Sun X J, Dong H. Acta Mater, 2011; 59: 4002
[14] Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q. Scr Mater, 2010; 63: 815
[15] Zhou W H, Guo H, Xie Z J, Wang X M, Shang C J. Mater Sci Eng, 2013; A587: 366
[16] Zhou W H, Wang X L, Venkatsurya P K C, Guo H, Shang C J, Misra R D K. Mater Sci Eng, 2014; A607: 569
[17] Xie Z J, Yuan S F, Zhou W H, Yang J R, Guo H, Shang C J. Mater Des, 2014; 59: 195
[18] Takaki S, Fukunaga K, Syarif J, Tsuchiyama T. Metall Trans, 2004; 45: 2251
[19] Sakuma Y, Matsumura O, Takechi H. Metall Trans, 1991; 22A: 489
[20] Thomas G. Metall Trans, 1978; 9A: 447
[21] Chi C Y, Dong J X, Liu W Q, Xie X S. Acta Metall Sin, 2010; 46: 1145
(迟成宇, 董建新, 刘文庆, 谢锡善. 金属学报, 2010; 46: 1145)
[22] Ray A, Dhua S K. Mater Charact, 1996; 37: 1
[23] Zhang Y H, Zhao H J, Kang Y L. Hot Working Tech, 2006; 35(6): 62
(张迎晖, 赵鸿金, 康永林. 热加工工艺, 2006; 35(6): 62)
[24] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[25] Yen H Y, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[26] He B B, Huang M X, Liang Z Y, Ngan A H W, Luo H W, Shi J, Cao W Q, Dong H. Scr Mater, 2013; 69: 216
[27] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H. Mater Sci Eng, 2011; 528A: 8486
[28] Zhou W H, Guo H, Xie Z J, Shang C J. Mater Des, 2014; 59: 195
[1] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[2] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[3] DONG Han,LIAN Xintong,HU Chundong,LU Hengchang,PENG Wei,ZHAO Hongshan,XU Dexiang. High Performance Steels: the Scenario of Theoryand Technology[J]. 金属学报, 2020, 56(4): 558-582.
[4] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[5] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[6] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[7] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[8] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[10] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[11] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[12] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[13] Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. 金属学报, 2015, 51(5): 527-536.
[14] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[15] JU Biao, WU Huibin, TANG Di, PAN Xuefu. EFFECT OF MICROSTRUCTURE EVOLUTION ON MECHANICAL PROPERTIES OF ULTRA-HIGH STRENGTH WEAR RESISTANCE STEEL[J]. 金属学报, 2014, 50(9): 1055-1062.
No Suggested Reading articles found!