Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 745-750    DOI: 10.3724/SP.J.1037.2013.00042
Current Issue | Archive | Adv Search |
EFFECTS OF CURRENT DENSITY ON MICROSTRUCTURE OF W COATING ON V-4Cr-4Ti ALLOY BY ELECTRODEPOSITION
LI Xuliang, ZHANG Yingchun, JIANG Fan, WANG Lili, LIU Yanhong, SUN Ningbo
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

LI Xuliang, ZHANG Yingchun, JIANG Fan, WANG Lili, LIU Yanhong, SUN Ningbo. EFFECTS OF CURRENT DENSITY ON MICROSTRUCTURE OF W COATING ON V-4Cr-4Ti ALLOY BY ELECTRODEPOSITION. Acta Metall Sin, 2013, 49(6): 745-750.

Download:  PDF(1548KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The W coatings prepared on structure materials (V-4Cr-4Ti) as plasma facing materials, not only can release impinging thermal power but also can resist erosion under plasma particles bombardment in international thermonuclear experimental reactor. The electro deposition of W in Na2WO4-WO3 melt as a promising technique was studied in this work. The effects of current density on microstructure and mechanical properties of W coating were investigated, and the results show that, with the increasing of the current density, the trend of crystal growth is promoted and the grain size of W coatings increased. The nucleation easily occurs on V-4Cr-4Ti alloy substrate for W atom, and after that, the growth of crystal nuclei is the most important factor for the formation of coatings. When the current density increases to 100 mA/cm2, the metallographic structure of W coatings presents columnar or stripy structure, and tooth-like grains were presented in microstructure as current density is lower. The Vickers micro-hardness of W coatings is decreased as increasing current density, and the adhesive strength of the coatings is greater than 59.36 MPa by the tensile test. Although the thickness of tungsten coatings is 10 μm as current density is 10 mA/cm2, grain size is less than 5 μm, Vickers hardness, current efficiency and the coatings adhesion are all maximum, and the values are 628.42 HV, 99.71% and 96 N respectively.

Key words:  W coating      Na2WO4-WO3      electrodeposition      current density     
Received:  23 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00042     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/745

[1] Ma R X, Zhou C H, Li G X.  Chin J Nonferrous Met, 2000; 10: 715

 (马瑞新, 周传华, 李国勋. 中国有色金属学报, 2000; 10: 715)
[2] Liu Y H, Zhang Y C, Ge C C.  Mater Sci Eng Powder Metall, 2011; 16: 315
 (刘艳红, 张迎春, 葛昌纯.粉末冶金材料科学与工程, 2011; 16: 315)
[3] Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N.  J Nucl Mater, 2002; 329-333: 66
[4] Xu Z Y.  Atom Energy Sci Technol, 2003; 37(suppl): 105
 (许增裕. 原子能科学与技术, 2003; 37(增刊): 105)
[5] Nishimura A, Iwahori A, Heo N J, Nagasaka T, Muroga T, Tanaka S I.  J Nucl Mater, 2004; 329-333: 438
[6] Senderoff S, Mellors G W.  Science, 1966; 153: 1475
[7] Katagiri A.  J Electrochem Soc, 1991; 38: 768
[8] Masuda M, Takenishi H, Katagiri A.  J Electrochem Soc, 2001; 148: 60
[9] Nakajima H, Nohira T, Hagiwara H, Nitta K, Inazawa S, Okada K.
 Electrochim Acta, 2007; 53: 25
[10] Wu Z D.  Acta Chemica Sin, 1990; 48: 895
 (吴仲达. 化学学报, 1990; 48: 895)
[11] Malyshev V V.  Protect Met, 2001; 37: 247
[12] Ma R X, Lin W, Wu Z L, Kang B, Wang M K.  Mater Sci Technol, 2009; 17: 754
 (马瑞新, 林炜, 吴中亮, 康勃, 王目孔.材料科学与工艺, 2009; 17: 754)
[13] Li Y G.  PhD Dissertation, Northeastern University, Shenyang, 2005
 (李运刚. 东北大学博士学位论文, 沈阳, 2005)
[14] Liu Y H, Zhang Y C, Liu Q Z.  Rare Met Mater Eng, 2011; 40: 436
 (刘艳红, 张迎春, 刘其宗. 稀有金属材料与工程, 2011; 40: 436)
[15] Liu Y H, Zhang Y C, Liu Q Z, Li X L, Jiang F.  Int J Refract Met Hard Mater, 2012; 35: 241
[16] Liu Y H, Zhang Y C, Liu Q Z, Li X L, Jiang F.  Fusion Eng Des, 2012; 87: 1861
[17] Zhang Q X, Zhao Q S.  Tungsten and Molybdenum Metallurgy.Beijing: Metallurgical Industry Press, 2005: 65
 (张启修, 赵秦生. 钨钼冶金. 北京: 冶金工业出版社, 2005: 65)
[18] Zhou S M.  Principle and Methodology for Electrodeposition.Shanghai: Shanghai Science and Technology Press, 1987: 124
 (周绍民. 金属电沉积-原理与研究方法. 上海: 上海科学技术出版社, 1987: 124)
[19] Budevski E, Staikov G, Lorenz W J.  Electrochem Acta, 2000; 45: 2559
[20] Hirai T, Pintsuk G, Linke J, Batilliot M.  J Nucl Mater, 2009; 390-391: 751
[21] Pintsuk G, Prokhodtseva A.  J Nucl Mater, 2011; 417: 483
[22] Koji N, Toshiyuki N, Rika H.  J Appl Electrochem, 2010; 40: 1443
[23] Yu Y N.  Principles of Metallography. Beijing: Metallurgical Industry Press, 2000: 275
 (余永宁. 金属学原理. 北京: 冶金工业出版社, 2000: 275)
[24] Chen F C, Xiao X, Zhou Q, He D L.  Contemporary Electroplating Technology.Beijing: China Textile & Apparell Press, 2009:46
 (陈范才, 肖鑫, 周琦, 何德良. 现代电镀技术. 北京: 中国纺织出版社, 2009: 46)
[25] Sethi R S.  J Appl Eletrochem, 1979; 9: 419
[26] Simka W, Puszczyk D, Nawrat G.  Electrochim Acta, 2009; 54: 5310
[1] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[2] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[3] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[4] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[5] Rongyao MA, Lin ZHAO, Changgang WANG, Xin MU, Xin WEI, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on the Thermodynamics and Kinetics of Metal Corrosion[J]. 金属学报, 2019, 55(2): 281-290.
[6] Runzhi QIN, Yanxia DU, Minxu LU, Li OU, Haiming SUN. Study of Interference Parameters Variation Regularity and Corrosion Behavior of X80 Steel in Guangdong Soil Under High Voltage Direct Current Interference[J]. 金属学报, 2018, 54(6): 886-894.
[7] Huiying SHI, Chao YANG, Bailing JIANG, Bei HUANG, Di WANG. Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering[J]. 金属学报, 2018, 54(6): 927-934.
[8] Zhao CHENG, Shuai JIN, Lei LU. Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu[J]. 金属学报, 2018, 54(3): 428-434.
[9] Tingting ZHAO, Zhixin KANG, Xiayu MA. Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities[J]. 金属学报, 2018, 54(1): 109-117.
[10] Shuai JIN,Zhao CHENG,Qingsong PAN,Lei LU. EFFECT OF ELECTROLYTE ADDITIVE CONCEN-TRATION ON MICROSTRUCTURE OF DIRECT-CURRENT ELECTRODEPOSITED NANOTWINNED Cu[J]. 金属学报, 2016, 52(8): 973-979.
[11] SHAN Haiquan, ZHANG Yuefei, MAO Shengcheng, ZHANG Ze. ELECTRON MICROSCOPY STUDY OF FIVE-FOLD TWINS IN ELECTRODEPOSITED NANO-TWIN Ni[J]. 金属学报, 2014, 50(3): 305-312.
[12] JIN Shuai, PAN Qingsong, LU Lei. MICROSTRUCTURE DEPENDENCE OF DIRECTCURRENT ELECTRODEPOSITED BULK Cu WITH PREFERENTIALLY ORIENTED NANOTWINS ON THE CURRENT DENSITIES[J]. 金属学报, 2013, 49(5): 635-640.
[13] NIU Yunsong, WEI Jie, ZHAO Jian, HU Jiaxiu, YU Zhiming. PREPARATION AND PROPERTIES OF NANOSIZED MUL-TILAYERED Ni COATINGS BY ULTRASOUND-ASSISTED ELECTRODEPOSITION[J]. 金属学报, 2013, 49(12): 1617-1622.
[14] LONG Qiong, ZHONG Yunbo, LI Fu, LIU Chunmei, ZHOU Junfeng, FAN Lijun, LI Mingjie. EFFECT OF STATIC MAGNETIC FIELD ON THE MORPHOLOGY AND Si CONTENT OF Fe-Si COMPOSITE COATING[J]. 金属学报, 2013, 49(10): 1201-1210.
[15] CHENG Yuhao ZHANG Yuefei MAO Shengcheng HAN Xiaodong ZHANG Ze. EFFECT OF TEMPERATURE ON MICROSTRUCTURE AND NANOINDENTATION MECHANICAL PROPERTIES OF ELECTRODEPOSITED NANO-TWINNED Ni[J]. 金属学报, 2012, 48(11): 1342-1348.
No Suggested Reading articles found!