Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 544-552    DOI: 10.3724/SP.J.1037.2012.00690
Current Issue | Archive | Adv Search |
LIQUID METAL FLOW DRIVEN BY A MODULATED HELICAL MAGNETIC FIELD
WANG Songwei1,2), WANG Xiaodong2), NI Mingjiu3), ZHANG Xinde1,2), WANG Zenghui3),NA Xianzhao1)
1) State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing100081
2) College of Materials Science and Opto-electronic Technology, University of Chinese Academy Sciences, Beijing 100049
3) School of Physics, University of Chinese Academy Sciences, Beijing 100049
Cite this article: 

WANG Songwei, WANG Xiaodong, NI Mingjiu, ZHANG Xinde, WANG Zenghui,NA Xianzhao. LIQUID METAL FLOW DRIVEN BY A MODULATED HELICAL MAGNETIC FIELD. Acta Metall Sin, 2013, 49(5): 544-552.

Download:  PDF(5831KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnetic fields and electromagnetic forces have long been used to control the flow of a solidifying melt. In this study, low-frequency modulated electromagnetic stirring was provided by a helical permanent magnet stirrer, which can be considered as superposition of traveling and rotating magnetic fields. Flow behaviors of liquid metal driven by this helical magnetic field was investigated. Moreover, the rotating direction of the helical magnetic field was periodically reversed to form a modulated helical magnetic field. The helical magnetic field was constructed on some units of the permanent magnets magnetized in their radius directions. The liquid metal was driven by the Lorentz force via this rotating magnetic stirrer. The azimuthal and axial velocity distribution of liquid GaInSn alloy was quantitatively measured using an ultrasonic Doppler velocimetry (UDV), which revealed the time-dependent flow structure and flow pattern varying with the modulation parameters: the rotating speed of the magnetic stirrer and the modulation frequency. The main results of the velocity measurement of the liquid metal were as followed: the  azimuthal velocity of the screw flow was periodically reversed with the same modulated frequency, and the flow intensity gradually saturated when the modulation period Tm40 s; The axial flow resulted from the competition of large vertical vortex driven by the traveling component of the helical magnetic field and the secondary flow driven by the rotating component of the helical magnetic field. There was a critical modulated period Tm* with respect to the reversed characteristic and flow intensity. When Tm<Tm*, the axial velocity exhibited typically reversed flow, when Tm > Tm*, the secondary flow appeared and gradually dominated in the axial flow pattern. The prospective goals of the present study is to develop proper magnetic fields, which can generate a three-dimensional modulated metal flow in front of solidifying front to adapt the varying casting slabs. The role of electromagnetically driven flow is to transport the solute rejected by the solidifying interface at significant distances in the melt, and to periodically reverse its circulation so that macrosegregation is minimized.

Key words:  liquid metal      permanent magnet      helical magnetic field      velocity distribution      screw flow     
Received:  19 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00690     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/544

[1] Griffiths W D, McCartney D G.  Mater Sci Eng, 1997; A222: 140


[2] Vives C.J Cryst Growth, 1997; 173: 541

[3] Medina M, Du Terrail Y, Durand F, Fautrelle Y.  Metall Mater Trans, 2004; 4B: 743

[4] Noeppel A, Ciobanas A, Wang X D, Zaidat K, Mangelinck N, Budenkova O, Weiss A, Zimmermann G, Fautrelle Y. Metall Mater Trans, 2010; 41B: 193

[5] Cramer A, Pal J, Gerbeth G.  Phys Fluids, 2007; 19: 118109

[6] Zhao Q, Fang C F, Hou X G, Han Y B, Zhang N, Zhang X G.  Spec Cast Nonferrous Alloys, 2011; 31: 495

(赵倩, 房灿峰, 侯晓光, 韩彦博, 张楠, 张兴国. 特种铸造及有色合金, 2011; 31: 495)

[7] Xing W B, Xu C X, Fang C G, Mao B, Wang S Y.  J Univ Sci Technol Beijing, 1991; 13: 110

(邢文彬, 许诚信, 房彩刚, 毛斌, 王世郁. 北京科技大学学报, 1991; 13: 110)

[8] Wang X D, Li T J, Fautrelle Y, Dupouy M D, Jin J Z.  J Cryst Growth, 2005; 275: 1473

[9] Vives C N.  Magnetohydrodynamic, 1996; 32: 201

[10] Wang X D, Ciobanas A, Baltaretu F, Bianchi A M, Fautrelle Y.  Mater Sci Forum, 2006; 508: 163

[11] Wang X D, Fautrelle Y, Etay J, Moreau R.  Metall Mater Trans, 2009; 40B: 82

[12] Wang X D, Moreau R, Etay J, Fautrelle Y.  Metall Mater Trans, 2009; 40B: 104

[13] Yang Y S, Ma X P, Li Y J.  Mater Sci Forum, 2010; 654--656: 428

[14] Ma X P, Li Y J, Yang Y S.  J Mater Res, 2009; 24: 3174

[15] Wang B, Yang Y S, Ma X P, Tong W H.  Trans Nonferrous Met Soc Chin, 2010; 20: 283

[16] Hua J S, Zhang Y J, Wang E G, He J C.  J Northeastern Univ (Nat Sci), 2011; 32: 72

(华骏山, 张永杰, 王恩刚, 赫冀成. 东北大学学报 (自然科学版), 2011; 32: 72)

[17] Hua J S, Zhang Y J, Wang E G, He J C.  J Northeastern Univ (Nat Sci), 2011; 32: 258

(华骏山, 张永杰, 王恩刚, 赫冀成. 东北大学学报 (自然科学版), 2011; 32: 258)

[18] Eckert S, Nikrityuk P A, Rabiger D, Eckert K, Gerbeth G.  Metall Mater Trans, 2008; 39B: 374

[19] Nikrityuk P A, Ungarish M, Eckert K, Grundmann R.  Phys Fluids, 2005; 17: 067101

[20] Rabiger D, Eckert S, Gerbeth G.  Exp Fluids, 2010; 48: 233

[21] Zhang Q, Jin J Z, Wang T M, Li T Q, Guo Q T.  Chin J Nonferrous Met, 2007; 17: 98

(张琦, 金俊泽, 王同敏, 李廷举, 郭庆涛. 中国有色金属学报, 2007; 17: 98)

[22] Willers B, Eckert S, Nikrityuk P A, Rabiger D, Dong J, Eckert K, Gerbeth G.  Metall Mater Trans, 2008; 39B: 304

[23] Wang X D, Na X Z, Wang S W.  Chin Pat, 201210473725.3, 2012

(王晓东, 那贤昭, 王松伟. 中国专利, 201210473725.3, 2012)

[24] Morley N B, Burris J, Cadwallader L C, Nornberg M D.  Rev Sci Instrum, 2008; 79: 056107

[25] Cramer A, Zhang C, Eckert S.  Flow Meas Instrum, 2004; 15: 145

[26] Feng R.  Ultrasonics Handbook Version 1.0. Nanjing: Nanjing University, 1999: 122

(冯若. 超声手册第一版. 南京: 南京大学出版社, 1999: 122)

[27] Jia G L, Pang W C.  Electromagnetic Processing of Materials.

Shenyang: Northeastern University Press, 2003: 150

(贾光霖, 庞维成. 电磁冶金原理与工艺. 沈阳: 东北大学出版社, 2003: 150)
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[3] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[4] CHEN Hongyu, SONG Xin, ZHOU Xianglong, JIA Wentao, YUAN Tao, MA Tianyu. Identification of 2:17R' Cell Edge Phase in Sm2Co17-Type Permanent Magnets by Transmission Electron Microscopy[J]. 金属学报, 2021, 57(12): 1637-1644.
[5] Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing[J]. 金属学报, 2018, 54(5): 615-626.
[6] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
[7] Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. 金属学报, 2017, 53(5): 513-523.
[8] Ke YANG, Wei YAN, Zhiguang WANG, Yiyin SHAN, Quanqiang SHI, Xianbo SHI, Wei WANG. DEVELOPMENT OF A NOVEL STRUCTURAL MATERIAL (SIMP STEEL) FOR NUCLEAR EQUIPMENT WITH BALANCED RESIS-TANCES TO HIGH TEMPERATURE, RADIATION AND LIQUID METAL CORROSION[J]. 金属学报, 2016, 52(10): 1207-1221.
[9] LIU Qinghua,HUANG Yujin,LIU Jian,HU Qiaodan,LI Jianguo . MICROSTRUCTURE AND CRYSTAL ORIENTATION OF THE STEADY GROWTH ZONE IN THE DIRECTION ALLY SOLIDIFIED Ni-Fe-Ga-Co MAGNETIC SHAPE MEMORY ALLOYS[J]. 金属学报, 2013, 29(4): 391-398.
[10] . FORMATION OF SOLIDIFICATION AND HOMOGENISATION MICROPORES IN TWO SINGLE CRYSTAL SUPERALLOYS PRODUCED BY HRS AND LMC PROCESSES[J]. 金属学报, 2012, 48(10): 1237-1247.
[11] WEN Peng Shinozaki Kenji Yamamoto Motomichi. HIGH SPEED AND HIGH MAGNIFICATION IN SITU OBSERVATION OF RESIDUAL LIQUID METAL DURING LASER WELDING PROCESS[J]. 金属学报, 2011, 47(3): 305-310.
[12] WANG Qian JIANG Chengbao. STUDY ON SmCo PERMANENT MAGNETS UNDER 350℃ MODERATE TEMPERATURES[J]. 金属学报, 2011, 47(12): 1605-1610.
[13] GE Bingming LIU Lin ZHANG Shengxia ZHANG Jun LI Yafeng FU Hengzhi. INFLUENCE OF WITHDRAWAL RATE ON MICROSTRUCTURES OF BLADE SHAPED DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY[J]. 金属学报, 2011, 47(11): 1470-1476.
[14] ZHANG Jian SHEN Jian LU Yuzhang LOU Langhong. PROCESSING, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LARGE DIRECTIONALLY SOLIDIFIED CASTINGS FOR INDUSTRIAL GAS TURBINE APPLICATIONS[J]. 金属学报, 2010, 46(11): 1322-1326.
[15] YU Zhan ZHANG Zhenqiang REN Zhongming LEI Zuosheng DENG Kang. STUDY ON THE FLUID FLOW IN SLAB CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC BRAKE[J]. 金属学报, 2010, 46(10): 1275-1280.
No Suggested Reading articles found!