Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1207-1221    DOI: 10.11900/0412.1961.2016.00320
Orginal Article Current Issue | Archive | Adv Search |
DEVELOPMENT OF A NOVEL STRUCTURAL MATERIAL (SIMP STEEL) FOR NUCLEAR EQUIPMENT WITH BALANCED RESIS-TANCES TO HIGH TEMPERATURE, RADIATION AND LIQUID METAL CORROSION
Ke YANG1(),Wei YAN1,Zhiguang WANG2,Yiyin SHAN1,Quanqiang SHI1,Xianbo SHI1,Wei WANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Cite this article: 

Ke YANG, Wei YAN, Zhiguang WANG, Yiyin SHAN, Quanqiang SHI, Xianbo SHI, Wei WANG. DEVELOPMENT OF A NOVEL STRUCTURAL MATERIAL (SIMP STEEL) FOR NUCLEAR EQUIPMENT WITH BALANCED RESIS-TANCES TO HIGH TEMPERATURE, RADIATION AND LIQUID METAL CORROSION. Acta Metall Sin, 2016, 52(10): 1207-1221.

Download:  HTML  PDF(8593KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Accelerator driven subcritical (ADS) system has been recognized to be the most promising technology for safely treating the nuclear wastes by now. In China, ADS system has achieved great progress in both fundamental research and engineering practice. This system is composed of three parts, which are accelerator, spallation target and reactor. The biggest challenge exists in the structural material for the spallation target is to possess not only good heat-resistance and radiation resistance but also a resistance to liquid metal corrosion. A novel martensitic heat-resistant steel, SIMP steel, has been developed against this challenge. By negotiating the effects of the contents of those important elements such as C, Cr and Si in the (9%~12%)Cr martensitic heat-resistant steel on heat resistance, radiation resistance, and liquid metal corrosion resistance, an optimized chemical composition was obtained for SIMP steel and a good balance was reached among these three properties. The test results conducted on 1 t and 5 t grade SIMP steels showed that this novel steel is much potential as a candidate structural material for the spallation target in ADS system.

Key words:  ADS system      steel for nuclear structure      heat-resistant      radiation      liquid metal corrosion     
Received:  20 July 2016     
ZTFLH:     
Fund: Supported by Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDA03010301 and XDA03010302)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00320     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1207

Fig.1  Principle for chemical composition design of SIMP steel (LBE—Pb-Bi eutectic)
Fig.2  SIMP steel ingots of different grades
Steel C Si Cr Mn W Ta V S P Fe
1 t 0.22 1.22 10.24 0.52 1.45 0.12 0.18 0.0043 0.0040 Bal.
5 t 0.20 1.22 10.54 0.45 1.26 0.15 0.20 0.0030 0.0030 Bal.
Table 1  Chemical compositions of 1 t and 5 t grade SIMP steels (mass fraction / %)
5 t steel Ni Mo Ti Nb Al Co
Top of ingot
Bottom of ingot
0.0050 0.0008 0.003 0.0001 0.0050 0.002
0.0049 0.0005 0.003 0.0002 0.0050 0.001
Table 2  Contents of active elements in the 5 t grade SIMP steel (mass fraction / %)
Fig.3  OM (a) and TEM (b) images of martensitic microstructures of the as-treated SIMP steel
Steel Temperature
Yield strength MPa Tensile strength
MPa
Elongation
%
Reduction of area / % Impact toughness
J
1 t SIMP RT 582 825 23.5 65.0 132
600 267 355 44.0 - -
650 182 269 34.2 - -
5 t Up RT 613 833 20.5 64.3 109
SIMP 600 292 350 46.7 - -
650 218 273 34.5 - -
Middle RT 588 814 19.5 63.5 116
600 298 352 49.2 - -
650 220 275 38.6 - -
Down RT 598 823 21.7 63.3 111
600 305 360 39.8 - -
650 222 275 41.5 - -
T91 RT 521 699 24.0 74.0 82
600 281 344 42.0 95.0 -
650 177 272 39.0 98.0 -
Table 3  Mechanical properties of SIMP steels on 1 t and 5 t grade steels and T91 steel
Fig.4  Comparisions of creep strength between 1 t SIMP steel and T91 steel at 550 ℃ (a), 600 ℃ (b) and 650 ℃ (c)
Fig.5  Comparisions of creep strength between 5 t SIMP steel and T91 at 400 ℃ (a), 450 ℃ (b), 600 ℃ (c), 700 ℃ (d) and 750 ℃ (e)
Fig.6  SEM images of 1 t SIMP steel aged at 650 ℃ for 120 h (a) and 2400 h (b)
Fig.7  Weight increase (a) and increasing rate (b) of SIMP steel and P92 steel oxidized at 700 ℃
Fig.8  Weight increase (a) and increasing rate (b) of SIMP steel and P92 steel oxidized at 800 ℃
Fig.9  Cross section SEM images of oxidation films on SIMP steel (a) and T91 steel (b) oxidized at 700 ℃ for 500 h
Fig.10  XRD spectra of the oxidation films on SIMP steel (a) and T91 steel (b) oxidized at 700 ℃ for 500 h
Fig.11  Cross section SEM images of SIMP (a, c, e) and T91 (b, d, f) steels after exposures in static oxygen-saturated liquid LBE alloy at 600 ℃ for 100 h (a, b), 500 h (c, d) and 1000 h (e, f) (IOZ—internal oxidation zone)
Fig.12  Thicknesses of oxide film (a) and diffusion layer (b) obtained by oxidations of SIMP and T91 steels in static oxygen-saturated liquid LBE alloy at 600 ℃ (K—parabolic constant)
Fig.13  EPMA element distributions of SIMP (a) and T91 (b) steels after exposure in static oxygen-saturated liquid LBE alloy at 600 ℃ for 1000 h
Fig.14  EPMA element distributions of Fe-Cr spinel and diffusion layers on SIMP (a) and T91 (b) steels after exposures in the static oxygen-saturated liquid LBE alloy at 600 ℃ for 1000 h (Zones A and B indicate Cr segregation and Cr even zones, respectively)
Fig.15  Binding strength test between the oxidation film and the steel matrix
Fig.16  Room temperature tensile properties of SIMP steel and T91 steel after soaking in the oxygen-staturated liquid LBE at 600 ℃ for different times
(a) strength (b) ductility
Fig.17  600 ℃ tensile properties of SIMP (a~c) and T91 (d~f) steels after soaking in the oxygen-saturated LBE at 600 ℃
Steel Original 300 h 500 h 1000 h 2000 h
T91 4.00 4.05 4.09 4.13 4.120
SIMP 4.00 4.05 4.08 4.14 4.115
Table 4  Diameter change in the gauge section of tensile samples after soaking in liquid LBE alloy for different times (mm)
Fig.18  Tensile properties of as-treated SIMP steel in liquid LBE at 300 ℃
[1] Team of Strategic Priority Program on ADS Transmutation System of Advanced Fission Energy.Bull Chin Acad Sci, 2015; (4): 527
[1] (中国科学院"未来先进核裂变能—ADS嬗变系统"战略性先导科技专项研究团队. 中国科学院院刊, 2015; (4): 527)
[2] Yeliseyeva O, Tsisar V, Benamati G.Corros Sci, 2008; 50: 1672
[3] Martinelli L, Balbaud-Célérier F, Terlain A, Delpech S, Santarini G, Favergeon J, Moulin G, Tabarant M, Picard G.Corros Sci, 2008; 50: 2523
[4] Martinelli L, Balbaud-Célérier F, Terlain A, Bosonnet S, Picard G, Santarini G.Corros Sci, 2008; 50: 2537
[5] Martinelli L, Balbaud-Célérier F.Mater Corros, 2011; 62: 531
[6] Schroer C, Konys J.J Eng Gas Turbines Power, 2010; 132: 082
[7] Klueh R L, Harries D R.High-Chromium Ferritic and Martensitic Steels for Nuclear Applications. ASTM West Conshohocken, PA: American Society for Testing and Materials, 2001: 1
[8] Klueh R, Nelson A.J Nucl Mater, 2007; 371: 37
[9] Chen Y X, Yan W, Hu P, Shan Y Y, Yang K.Acta Metall Sin, 2011; 11: 1372
[9] (陈云翔, 严伟, 胡平, 单以银, 杨柯. 金属学报, 2011; 11: 1372)
[10] Hu P, Yan W, Sha W, Wang W, Shan Y Y, Yang K.J Mater Sci Technol, 2011; 27: 344
[11] Chen X Z, Shen Z, Chen X, Lei Y C, Huang Q Y.Fusion Eng Des, 2011; 86: 2943
[12] Huang Q Y, Li C J, Wu Q S, Liu S J, Gao S, Guo Z H, Yan Z L, Huang B, Yong S, Zhu Z Q, Chen Y P, Ling X X, Wu Y C.J Nucl Mater, 2011; 417: 85
[13] Peng L, Huang Q Y, Li C J, Liu S J. J Nucl Mater, 2009; 386-388: 312
[14] Huang Q, Li J G, Chen Y X. J Nucl Mater, 2004; 329-333: 268
[15] Huang L X, Hu X, Yang C G, Yan W, Xiao F R, Shan Y Y, Yang K.J Nucl Mater, 2013; 443: 479
[16] Hu X, Huang L X, Yan W, Wang W, Sha W, Shan Y Y, Yang K.Mater Sci Eng, 2014; A613: 404
[17] Hu X, Huang L X, Yan W, Wang W, Sha W, Shan Y Y, Yang K.Mater Sci Eng, 2013; A586: 253
[18] Hu X, Huang L X, Wang W G, Yang Z G, Sha W, Wang W, Yan W, Shan Y Y.Fusion Eng Des, 2013; 88: 3050
[19] Lindau R, M?slang A, Rieth M, Klimiankou M, Materna-Morris E, Alamo A, Tavassoli A A F, Cayron C, Lancha A M, Fernandez P, Baluc N, Sch?ublin R, Diegele E, Filacchioni G, Rensman J W, van der Schaaf B, Lucon E, Dietz W. Fusion Eng Des, 2005; 75-79: 989
[20] Lindau R, M?slang A, Schirra M. Fusion Eng Des, 2002; 61-62: 659
[21] Lucon E, Decréton M, van Walle E.Fusion Eng Des, 2003; 69: 373
[22] Lucon E, Vandermeulen W. J Nucl Mater, 2009; 386-388: 254
[23] Marmy P, Kruml T.J Nucl Mater, 2008; 377: 52
[24] Tong Z, Dai Y.J Nucl Mater, 2010; 398: 43
[25] Wang J, Lu S P, Dong W C, Li D Z, Rong L J.Mater Des, 2014; 64: 550
[26] Stubbins J F, Gelles D S. J Nucl Mater, 1996; 233-237: 331
[27] Lapena J, Garcia-Mazario M, Fernandez P, Lancha A M. J Nucl Mater, 2000; 283-287: 662
[28] Nishimura A, Nagasaka T, Inoue N, Muroga T, Namba C. J Nucl Mater, 2000; 283-287: 677
[29] Li H L, Nishimura A, Li Z X, Nagasaka T, Muroga T.Fusion Eng Des, 2006; 81: 241
[30] Li Y F, Nagasaka T, Muroga T, Huang Q Y, Wu Y C. J Nucl Mater, 2009; 386-388: 495
[31] Eliseeva O, Tsisar V, Fedirko V, Matychak Y S.Mater Sci, 2004; 40: 260
[32] Eliseeva O I, Tsisar V P.Mater Sci, 2007; 43: 230
[33] Huntz A M, Bague V, Beauple G, Haut C, Severac C, Lecour P, Longaygue X, Ropital F.Appl Surf Sci, 2003; 207: 255
[34] Panait C G, Bendick W, Fuchsmann A, Gourgues-Lorenzon A F, Besson J.Int J Pressure Vessels Piping, 2010; 87: 326
[35] Aghajani A, Somsen C, Eggeler G.Acta Mater, 2009; 57: 5093
[36] Abd El-Azim M E, Ibrahim O H, El-Desoky O E.Mater Sci Eng, 2013; A560: 678
[37] Taneike M, Fujitsuna N, Abe F.Mater Sci Technol, 2004; 20: 1455
[38] Cerjak H, Hofer P, Schaffernak B.ISIJ Int, 1999; 39: 874
[39] Yong Q L.Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 433
[39] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 433)
[40] Shi Q Q, Liu J, Wang W, Yan W, Shan Y Y, Yang K.Oxid Met, 2015; 83: 521
[41] Niu Y, Wang S, Gao F, Zhang Z G, Gesmundo F.Corros Sci, 2008; 50: 345
[42] Asteman H, Spiegel M.Corros Sci, 2008; 50: 1734
[43] Stott F H, Wei F I.Oxid Met, 1989; 31: 369
[44] Babu N, Balasubramaniam R, Ghosh A.Corros Sci, 2001; 43: 2239
[45] Abderrazik G B, Moulin G, Huntz A, Young E.Solid State Ionics, 1987; 22: 285
[46] Nychka J, Clarke D.Oxid Met, 2005; 63: 325
[47] Mougin J, Dupeux M, Antoni L, Galerie A.Mater Sci Eng, 2003; A359: 44
[48] Li M S.High Temperature Corrosion of Metal. Beijing: Metallurgical Industry Press, 2001: 1
[48] (李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 1)
[49] Kaur I, Gust W.Fundamentals of Grain and Interphase Boundary Diffusion. Stuttgart: Ziegler Press, 1988: 1
[50] Tortorici P C, Dayananda M.Mater Sci Eng, 1998; A244: 207
[51] Pint B A, Wright I G. Mater Sci Forum, 2004; 461-464: 799
[52] Deacon R M, DuPont J, Kiely C, Marder A, Tortorelli P.Oxid Met, 2009; 72: 87
[53] Airiskallio E, Nurmi E, Heinonen M H, Vayrynen I J, Kokko K, Ropo M, Punkkinen M P J, Pitkanen H, Alatalo M, Kollar J, Johansson B, Vitos L.Corros Sci, 2010; 52: 3394
[54] Stott F H, Wei F I.Oxid Met, 1989; 31: 369
[55] Mikkelsen L, Linderoth S, Bilde-S?rensen J. Mater Sci Forum, 2004; 461-464: 117
[56] Pettersson R, Liu L, Sund J.Corros Eng Sci Technol, 2005; 40: 211
[57] Bamba G, Wouters Y, Galerie A, Charlot F, Dellali A.Acta Mater, 2006; 54: 3917
[58] Truman J E, Pirt K R.Corros Sci, 1976; 16: 103
[59] Ishitsuka T, Inoue Y, Ogawa H.Oxid Met, 2004; 61: 125
[60] Robertson J, Manning M I.Mater Sci Technol, 1989; 5: 741
[61] Wang S, Wu Y, Ni C S, Niu Y.Corros Sci, 2009; 51: 511
[62] Horita T, Kishimoto H, Yamaji K, Sakai N, Xiong Y, Brito M E, Yokokawa H.J Power Sources, 2006; 157: 681
[63] Horita T, Yamaji K, Yokokawa H, Toji A, Uehara T, Ogasawara K, Kameda H, Matsuzaki Y, Yamashita S.Int J Hydrogen Energy, 2008; 33: 6308
[64] Liu S, Tang D, Wu H B, Wang L D.J Mater Process Technol, 2013; 213: 1068
[65] Paúl A, Elmrabet S, Alves L C, da Silva M F, Soares J C, Odriozola J A.Nucl Instrum Methods Phys Res, 2001; 181B: 394
[66] Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S.Mater Charact, 2002; 49: 55
[67] Li B, Gleeson B.Oxid Met, 2006; 65: 101
[68] Trindade V B, Krupp U, Hanjari B Z, Yang S, Christ H J.Mater Res, 2005; 8: 371
[69] Steiner H.J Nucl Mater, 2009; 383: 267
[70] Eriko Y, Kevin G, Laure M.Corros Sci, 2011; 53: 3075
[71] Schroer C, Skrypnik A, Wedemeyer O, Konys J.Corros Sci, 2012; 61: 63
[72] Schroer C, Wedemeyer O, Novotny J, Skrypnik A, Konys J.Corros Sci, 2014; 84: 113
[73] Cathcart J V, Manly W D.Corrosion, 1956; 12: 43
[74] Malkow T, Steiner H, Muscher H, Konys J.J Nucl Mater, 2004; 335: 199
[75] Marino A, Lim J, Keijers S, Van den Bosch J, Deconinck J.Nucl Eng Des, 2013; 265: 576
[76] Blacha L, Mizera J, Folega P.Metalurgija, 2014; 53: 51
[77] Koury D, Johnson A L, Welch J, Farley J W.J Nucl Mater, 2012; 429: 210
[78] Shankar Rao V, Lim J, Hwang I S, Singhal L K.Corros Sci, 2012; 63: 113
[79] Susmikanti M, Andiwijayakusuma D, Ghofir, Maulana A.In: Su'ud Z, Waris A eds., The 3rd Int Conf on Advances in Nuclear Science and Engineering, Melville: Amer Inst Physic, 2012: 185
[80] Hosemann P, Dickerson R, Dickerson P, Li N, Maloy S A.Corros Sci, 2013; 66: 196
[81] Lambrinou K, Koch V, Coen G, Van den Bosch J, Schroer C.J Nucl Mater, 2014; 450: 244
[82] Kondo M, Takahashi M, Miura K, Onizawa T.J Nucl Mater, 2006; 357: 97
[83] Brissonneau L, Beauchamp F, Morier O, Schroer C, Konys J, Kobzova A, Di Gabriele F, Courouau J L.J Nucl Mater, 2011; 415: 348
[84] Ganesan R, Gnanasekaran T, Srinivasa R S.J Nucl Mater, 2006; 349: 133
[85] Lim J, Manfredi G, Gavrilov S, Rosseel K, Aerts A, Van den Bosch J.Sens Actuators, 2014; 204B: 388
[86] Li N.J Nucl Mater, 2002; 300: 73
[87] Ilincev G, Karnik D, Paulovic M, Doubkova A.Nucl Eng Des, 2006; 236: 1909
[88] Viswanathan R, Sarver J, Tanzosh J M.J Mater Eng Perform, 2006; 15: 255
[89] Fry A, Osgerby S, Wright M.Comp Methods Appl Mech Eng, 2002; 85: 374
[90] Ren X, Sridharan K, Allen T R.Mater Corros, 2010; 61: 748
[91] Bischoff J, Motta A T, Comstock R J.J Nucl Mater, 2009; 392: 272
[92] Shi Q Q, Liu J, Luan H, Yang Z G, Wang W, Yan W, Shan Y Y, Yang K.J Nucl Mater, 2015; 457: 135
[93] Birks N, Meier G H, Pettit F S.Introduction to the High Temperature Oxidation of Metals. New York: Cambridge University Press: 2006: 1
[94] Martinelli L, Balbaud-Celerier F, Terlain A, Bosonnet S, Picard G, Santarini G.Corros Sci, 2008; 50: 2537
[95] Bischoff J, Motta A T.J Nucl Mater, 2012; 424: 261
[96] Liu J, Shi Q Q, Luan H, Yan W, Sha W, Wang W, Shan Y Y, Yang K.Mater Sci Eng, 2016; A670: 97
[97] Wang J, Gao X, Wang Z G, Wei K F, Yao C F, Cui M H, Sun J R, Li B S, Pang L L, Zhu Y B, Luo P, Chang H L, Zhang H P, Zhu H P, Wang D, Du Y Y, Xie E Q.Chin Phys Lett, 2015; 32(7): 076101
[98] Wang J, Gao X, Gao N, Wang Z G, Cui M H, Wei K F, Yao C F, Sun J R, Li B S, Zhu Y B, Pang L L, Li Y F, Wang D, Xie E Q.J Nucl Mater, 2015; 457: 182
[99] Zhu H P, Wang Z G, Gao X, Cui M H, Li B S, Sun J R, Yao C F, Wei K F, Shen T L, Pang L L.Nucl Instrum Meth, 2015; 344B: 5
[100] Zhu H P, Wang Z G, Cui M H, Li B S, Gao X, Sun J R, Yao C F, Wei K F, Shen T L, Pang L L, Zhu Y B, Li Y F, Wang J, Xie E Q.Appl Surf Sci, 2015; 326: 1
[101] Li Y F, Shen T L, Gao Xing, Yao C F, Wei K F, Sun J R, Li B S, Zhu Y B, Pang L L, Cui M H, Chang H L, Wang J, Zhu H P, Hu B T, Wang Z G.Chin Phys Lett, 2013; 30: 126101
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[3] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[4] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[5] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[6] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[7] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[8] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[9] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[12] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[13] YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. 金属学报, 2021, 57(3): 257-271.
[14] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[15] LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. 金属学报, 2021, 57(1): 42-54.
No Suggested Reading articles found!