Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 553-561    DOI: 10.3724/SP.J.1037.2012.00505
Current Issue | Archive | Adv Search |
CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES
WANG Xinhua1), LI Xiugang1), LI Qiang1), HUANG Fuxiang1),LI Haibo2), YANG Jian2)
1)School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2)Shougang Technical Research Institute, Beijing 100042
Cite this article: 

WANG Xinhua, LI Xiugang, LI Qiang, HUANG Fuxiang,LI Haibo, YANG Jian. CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES. Acta Metall Sin, 2013, 49(5): 553-561.

Download:  PDF(5133KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The string shaped B type non-metallic inclusions in API (American Petroleum Institute) X80 pipeline steel plates, produced by the BOF-LF-RH-Ca treatment steelmaking route, were mainly of CaO-Al2O3 system with lower melting temperatures. The formation reasons are as follows: (1) there existed many small sized liquid inclusions of CaO-Al2O3 system in liquid steel after the secondary refining and Ca treatment. These small inclusions could aggregate to larger ones of 10- 20μm in continuous casting and be deformed into string shaped inclusions in steel plates during rolling. (2) for the larger sized and low melting temperature CaO-Al2O3 inclusions, in Ca treatment, their surface layers could be modified into high melting temperature CaO, CaS or CaO-CaS system, but the centers remained to be CaO-Al2O3 system. During rolling, these inclusions could also be elongated to string typed ones because of their soft CaO-Al2O3 centers. A new strategy for control of B type  inclusions in X80 pipeline steel plates was adopted. The key of the control was shifted from removing low melting temperature inclusions of CaO-Al2O3 system after Ca treatment to remove as much as possible inclusions especially large sized inclusions before the Ca treatment. With the new strategy, the amount of inclusions after RH refining was remarkably decreased and the efficiency of Ca treatment significantly improved. The non-metallic inclusions found in steel plates were all of high melting temperature CaO-CaS system and theseverity of B-type inclusions has been lowered from ≤2.0 to 0.

Key words:  X80 pipeline steel      non-metallic inclusion      B type inclusion      secondary refining      Ca treatment     
Received:  30 August 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00505     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/553

[1] Gatellier D C.  Tetsu-to-Hagane, 1984; 6: 872


[2] Simpson I D, Trit Z S, Moore L G.  Ironmaking Steelmaking, 2003; 30: 158

[3] Carneiro R A, Ratnapuli R C, Lins V C.  Mater Sci Eng, 2003; A357: 104

[4] Tanizawa K, Okumura H.  Proc of the Sixth International Iron and Steel Congress, Nagoya: ISIJ, 1990: 611

[5] Lachmund H, Yongkun X, Klaus H.  Steel Res, 2001; 72: 452

[6] Takahashi D, Kamo M, Kurose Y, Nomura H.  Ironmaking Steelmaking, 2003; 30: 116

[7] Haida O, Emi T, Sanbongi K, Shiraishi T, Fujiwara A.  Tetsu-to-Hagane, 1978; 64: 1538

[8] Holappa L, Helle A S.  J Mater Proc Technol, 1995; 53: 177

[9] Choudhary S K, Ghosh A.  ISIJ Int, 2008; 48: 1552

[10] Numata M, Higuchi Y.  Tetsu-to-Hagane, 2011; 97: 259

[11] Higuchi Y, Numata M, FukagawaS, Shinme K.  ISIJ Int (suppl), 1996; 36: 151

[12] Ye G, Jonsson P, Lund T.  ISIJ Int (suppl), 1996; 36: 105

[13] Holappa L, Hamalainen M, Liukkonen M, Lind M.  Ironmaking Steelmaking, 2003; 30: 111

[14] Lis T.  Metallurgia, 2009; 48: 95

[15] Ito Y, Suda M, Kato Y, Nakato H, Sorimachi K.  ISIJ Int (suppl), 1996; 36: 148

[16] Park J, Kim D, Lee S.  Metall Mater Trans, 2005; 36B: 67

[17] Han Z, Liu L, Lind M, Holappa L.  Acta Metall Sin (Engl Lett), 2009; 19: 1

[18] Lind M, Hollappa L.  Metall Mater Trans, 2010; 41B: 359

[19] Taguchi K, Hideki O. ISIJ Int, 2005; 45: 1572

[20] Vasilij P, Blazenko K, John W.  Hastie Steel Res, 1991; 62: 289

[21] Ye G, Jonsson P, Lund T.  ISIJ Int, 1996; 36: S105

[22] Cho S W, Suito H.  ISIJ Int, 1994; 3: 265

[23] Ohta H, Suito H.  ISIJ Int, 1996; 36: 983

[24] Kushida T, Higuchi Y, Numura M.  Sumitomo Res, 1996; 58(9): 24

[25] Ito Y, Nara S, Kato Y, Suda M.  Tetsu-to-Hagane, 2007; 93: 355

[26] Zhang L.  J Iron Steel Res Inter, 2006; 13: 1

[1] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[2] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[3] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[4] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[5] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[6] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[7] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
[8] LIU Zhiyong WANG Changpeng DU Cuiwei LI Xiaogang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2011, 47(11): 1434-1439.
[9] DENG Wei GAO Xiuhua QIN Xiaomei GAO Xin ZHAO Dewen DU Linxiu. EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS[J]. 金属学报, 2010, 46(8): 959-966.
[10] CHEN Xu WU Ming HE Chuan XIAO Jun. EFFECT OF APPLIED POTENTIAL ON SCC OF X80 PIPELINE STEEL AND ITS WELD JOINT IN KU’ERLE SOIL SIMULATED SOLUTION[J]. 金属学报, 2010, 46(8): 951-958.
[11] DENG Wei GAO Xiuhua QIN Xiaomei ZHAO Dewen DU Linxiu WANG Guodong. IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL[J]. 金属学报, 2010, 46(5): 533-540.
[12] ZHOU Jianlong LI Xiaogang DU Cuiwei LI Yunling LI Tao PAN Ying. ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION[J]. 金属学报, 2010, 46(2): 251-256.
[13] Changchun Ge; Jun YU. Superalloy fine powders prepared by a novel spark plasma discharge process[J]. 金属学报, 2008, 44(7): 892-896 .
[14] . Photo-electrochemical Characterization of Passive Film Formed on X80 Pipeline Steel[J]. 金属学报, 2008, 44(6): 739-744 .
No Suggested Reading articles found!