Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 735-742    DOI: 10.3724/SP.J.1037.2011.00057
论文 Current Issue | Archive | Adv Search |
CORRELATION BETWEEN COMPOSITION OF REINFORCING STEEL SURFACE FILM AND STEEL CORROSION BEHAVIOR IN SIMULATED CONCRETE
PORE SOLUTIONS
CHEN Wen, DU Ronggui, HU Ronggang, SHI Haiyan, ZHU Yanfeng, LIN Changjian
State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005
Cite this article: 

CHEN Wen DU Ronggui HU Ronggang SHI Haiyan ZHU Yanfeng LIN Changjian. CORRELATION BETWEEN COMPOSITION OF REINFORCING STEEL SURFACE FILM AND STEEL CORROSION BEHAVIOR IN SIMULATED CONCRETE
PORE SOLUTIONS. Acta Metall Sin, 2011, 47(6): 735-742.

Download:  PDF(565KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It is well known that reinforcing steel in concrete can be protected from corrosion by forming a compact passive film on its surface in a concrete pore solution with high alkalinity. The corrosion behavior of the steel is related to its passivation and depassivation. The pH value and the Cl concentration in a concrete pore solution are of the most important parameters affecting the passivity of reinforcing steel in concrete. In the present work, XPS analysis, linear polarization and potentiodynamic anodic polarization tests were used to study the relationship between the electrochemical corrosion behavior of reinforcing steel immersed in a simulated concrete pore solution and the chemical composition of the steel surface film. The results showed ht with the increase of the Cl concentration or the decrease of the pH value in the solution, the corrosion potential of the steel shifted negatively and its corrosion current density rose, and the Fe2+ content of the steel surface film increased and the Fe3+ content decreased. The steel was in an active state in the solution with Clconcentration higher than 0.6 mol/L or pH lower than 11.31, and the addition of 0.24 mol/L NaNO2 to the solution could protect steel from corrosion.
Key words:  reinforcing steel      simulated concrete pore solution      polarization curve      Cl     
Received:  24 January 2011     
ZTFLH: 

O646

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.21073151 and 50731004)and National High Technology Research and Development Program of China (No.2009AA03Z327)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00057     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/735

[1] Kumar V. Corros Rev, 1988; 16: 317

[2] Huet B, L’Hostis V, Miserque F, Idrissi H. Electrochim Acta, 2005; 51: 172

[3] Saremi M, Mahallati E. Cem Concr Res, 2002; 32: 1915

[4] Moreno M, Morris W, Alvarez M G, Duffo G S C. Corros Sci, 2004; 46: 2681

[5] Du R G, Hu R G, Huang R S, Lin C J. Anal Chem, 2006; 78: 3179

[6] Allahkaram S R, Khodayari M. Anti–Corros Method Mater, 2008; 55: 250

[7] Bentiss F, Traisnel M, Gengembre L, Lagrenee M. Appl Surf Sci, 1999; 152: 237

[8] Olsson C O A, Agarwal P, Frey M, Landolt D. Corros Sci, 2000; 42: 1197

[9] Hermas A A. Corros Sci, 2008; 50: 2498

[10] La P Q, Bai M W, Xue Q J, Lu W M. Surf Coat Technol, 1999; 113: 44

[11] Cheng X Q, Li X G, Dong C F. Int J Miner Metall Mater, 2009; 16: 170

[12] Malik M A, Kulesza P J, Wlodarczyk R, Wittstock G, Szargan R, Bala H, Galus Z. J Solid State Electrochem, 2005; 9: 403

[13] Wu Q, Liu Y, Du R G, Lin C J. Acta Metall Sin, 2008; 44: 346

(吴 群, 刘玉, 杜荣归, 林昌健. 金属学报, 2008; 44: 346)

[14] Abreu C M, Crist´obal M J, Losada R, N´ovoa X R, Pena G, P´erez M C. Electrochim Acta, 2006; 51: 1881

[15] Neal A L, Techkarnjanaruk S, Dohnalkova A, McCready D, Peyton B M, Geesey G G. Geochim Cosmochim Acta, 2001; 65: 223

[16] Stefanov P, Stoychev D, Stoycheva M, Gonzalez–Elipe A R, Marinova T. Surf Interface Anal, 1999; 28: 106

[17] Grosvenor A P, Kobe B A, Biesinger M C, McIntyre N S. Surf Interface Anal, 2004; 36: 1564

[18] Idla K, Talo A, Niemi H E M, Forsen O, Ylasaari S. Surf Interface Anal, 1997; 25: 837

[19] Sunol J J, Bonneau M E, Roue L, Guay D, Schulz R. Appl Surf Sci, 2000; 158: 252

[20] Mullet M, Khare V, Ruby C. Surf Interface Anal, 2008; 40: 323

[21] Nassir M H, Dwyer D J. J Vac Sci Technol, 1993; 11A: 2104

[22] Golub M A, Lopata E S, Finney L S. Langmuir, 1993; 9: 2240

[23] Su W C, Iroh J O. Electrochim Acta, 1999; 44: 3321

[24] Galtayries A, Warocquier–Clerout R, Nagel M D. Surf Interface Anal, 2006; 38: 186

[25] Bonnet F, Ropital F, Lecour P, Espinat D, Huiban Y, Gengembre L, Berthier Y, Marcus P. Surf Interface Anal, 2002; 34: 418

[26] Montemor M F, Simoes A M P, Ferreira M G S. Cem Concr Compos, 2003; 25: 491

[27] Kim Y J. Corrosion, 1999; 55: 81

[28] Schroeder V, Devine T M. J Electrochem Soc, 1999; 146: 4061

[29] Yin Z F, Zhao W Z, Bai Z Q, Feng Y R, Zhou W J. Electrochim Acta, 2008; 53: 3690

[30] Atenas G M, Mielczarski E, Mielczarski J A. J Colloid Interface Sci, 2005; 289: 157
[1] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[2] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[3] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[4] YANG Jingfeng DONG Junhua KE Wei. EFFECTS OF SO42− AND Cl ON ACTIVE/PASSIVE CORROSION BEHAVIORS OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION[J]. 金属学报, 2011, 47(10): 1321-1326.
[5] SHI Jinjie SUN Wei GENG Guoqing. INFLUENCE OF CARBONATION ON THE CORROSION PERFORMANCE OF STEEL HRB335 IN SIMULATED CONCRETE PORE SOLUTION[J]. 金属学报, 2011, 47(1): 17-24.
[6] XIANG Hongliang HUANG Weilin LIU Dong HE Fushan. EFFECTS OF N CONTENT ON MICROSTRUCTURE AND PROPERTIES OF 29Cr CASTING SUPER DUPLEX STAINLESS STEEL[J]. 金属学报, 2010, 46(3): 304-310.
[7] ZHOU Jianlong LI Xiaogang DU Cuiwei LI Yunling LI Tao PAN Ying. ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION[J]. 金属学报, 2010, 46(2): 251-256.
[8] QIAO Bing DU Ronggui CHEN Wen ZHU Yanfeng LIN Changjian. EFFECT OF NO2AND Cl ON THE CORROSION BEHAVIOR OF REINFORCING STEEL IN SIMULATED CONCRETE PORE SOLUTIONS[J]. 金属学报, 2010, 46(2): 245-250.
[9] ZOU Yan ZHENG Yingying WANG Yanhua WANG Jia. CATHODIC ELECTROCHEMICAL BEHAVIORS OF MILD STEEL IN SEAWATER[J]. 金属学报, 2010, 46(1): 123-128.
[10] YUAN Lei WANG Huaming. CORROSION BEHAVIORS OF Ni BASE SOLID SOLUTION-TOUGHENED Cr13Ni5Si2 ALLOY IN Cl- CONTAINING SOLUTIONS[J]. 金属学报, 2009, 45(11): 1384-1389.
[11] . STUDY ON THE EFFECT OF CHLORIDE IONS ON THE PASSIVE FILM ON REINFORCING STEEL IN SIMULATED CONCRETE PORE SOLUTIONS BY ELECTROCHEMICAL TECHNIQUES[J]. 金属学报, 2008, 44(3): 346-350 .
[12] ZHANG Jin-Tao. The electrochemical study of corrosion resistance of silane-based hybrid films doped with rare earth salt on aluminum alloy[J]. 金属学报, 2008, 44(11): 1372-1377 .
[13] ;. SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH CURRENT PULSED ELECTRON BEAM Part II Corrosion behaviors in the simulated body fluid[J]. 金属学报, 2007, 42(1): 71-76 .
[14] LIU Ping;XU Changgan Beijing University of Aeronautics and Astronautics. ELECTROCHEMICAL BEHAVIOUR OF PHASES IN TITANIUM ALLOYS[J]. 金属学报, 1989, 25(4): 115-119.
[15] WANG Jingyin Tianjin University SUN ZhongziLecturer;Department of Materials;Tianjin University. CORROSION RESISTANCE OF AMORPHOUS Fe_(75)Cr_5P_(13)C_7 POWDER[J]. 金属学报, 1988, 24(1): 138-140.
No Suggested Reading articles found!