Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 959-966    DOI: 10.3724/SP.J.1037.2010.00005
论文 Current Issue | Archive | Adv Search |
EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS
DENG Wei, GAO Xiuhua, QIN Xiaomei, GAO Xin, ZHAO Dewen, DU Linxiu
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

DENG Wei GAO Xiuhua QIN Xiaomei GAO Xin ZHAO Dewen DU Linxiu. EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS. Acta Metall Sin, 2010, 46(8): 959-966.

Download:  PDF(4604KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of cooling rate and deformation on microstructures of an X80 pipeline steel were investigated by thermo–mechanically simulated tests heated up to the same temperature and cooled at different rates under 0 and 0.7 true strain deformation. The results reveal that the start temperature for bainite transformation will be increased by 30—80 ℃higher under 0.7 true strain than under no deformation. But the increase of cooling rate depresses the start temperature for bainite transformation and accelerates the progress of its transformation. It is found that the microstructure of the cooled samples without deformation is all composed of bainite with prior austenite grain boundaries (PAGB), but it is complicated for the cooled samples under 0.7 true strain. In the range of 1—40 ℃/s, with the increase of cooling rate, microstructures appeare successively such as polygonal ferrite, quasi–polygonal ferrite, massive ferrite, granular bainite, acicular ferrite (+ granular bainite) and athy bainite. Full martnsite steel can be acheved by quenching. Under current experiment conditions, acicular ferrite can be obtained n the steel at cooling rates of 10—20 ℃/s. In this cooing ate range, the fraction of high angle grain boundaries (HAGBs) inceases and the grain size decreases with the increase of cooling rate.

Key words:  X80 pipeline steel      phase transformaton kinetics      cicular ferrite      electron backscattering diffraction (EBSD)      high ange grain boundary (HAGB)     
Received:  05 January 2010     
Fund: 

Supported by the Fundamental Research Funds for the Central Universities (No.N090607002), National Natural Science Foundation of China (No.50474015) and State Key Laboratory Self–determination Foundation (No.RAL–SD–2008–2)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00005     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/959

[1] Kim Y M, Kim S K, Lim Y J, Kim N J. ISIJ Int, 2002; 42: 1571 [2] Zhao M C, Shan Y Y, Xiao F R, Yang K, Li Y H. Mater Lett, 2002; 57: 141 [3] Bakkaloglu A. Mater Lett, 2002; 56: 200 [4] Zhao M C, Yang K, Shan Y Y. Mater Lett, 2003;57: 1496 [5] Zhao M C, Yang K, Xiao F R, Shan Y Y. Mater Sci Eng A,2003;355: 126 [6] Xiao F R, Liao B, Ren D L, Shan Y Y, Yang K. Mater Charact, 2005;54: 305 [7] Kim Y M, Lee H, Kim N J. Mater Sci Eng A, 2008;478: 361 [8] Pickering F B. Physical Metallurgy and Design of Steels. Essex: Applied Science Publishers Ltd., 1978: 64 [9] Dutta B, Valde′s E, Sellars C M. Acta Metall., 1992; 40 (4): 653 [10] Saito Y, Kimura M, Tanaska M, Sekine T, Tsubota K, Tanaka T. Kawasaki Steel Technical Report. 1984; 3: 12 [11] Aaronson H I, Enomoto M, Furuhara T, Reynolds W T. In: I. Tamura eds., Thermec 88, Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Tokyo: Iron and Steel Institute of Japan. 1988; 1: 80 [12] Cotrina E, Iza-Mendia A, López , Gutiérrez I. Metall Mater Trans, 2004; A 35(1): 93 [13] Umemoto M, Guo Z H, Tamura I. Mater Sci Technol, 1987; 3: 249 [14] Honeycombe R W K. Steels Microstructures and Properties. London: Edward Arnold Pub. Ltd., 1980: 43 [15] Zhong Y, Xiao F R, Zhang J W. Acta Materialia, 2006; 54: 435 [16] Bhadeshia H K D H. Mater Sci Eng A, 1999; 273-275: 58 [17] Manabu T. Current Opinion in Solid State Mater Sci, 2004; 8: 213 [18] Liu Sh K, Yang L, Zhang J, Zhu D G. Acta Metall Sin, 1992; 28: A513 (刘世楷, 杨柳, 张筠, 朱德贵. 金属学报, 1992; 12: A513) [19] Eghbali B, Abdollah-zadeh A. Scr Mater, 2006; 54: 1205 [20] Gregg J M, Bhadeshia H K D H. Metall Mater Trans, 1994; A 25:1603 [21] Quidort D, Bréchet Y. Scr Mater, 2002; 47: 151 [22] Li J, Sun F Y. Acta Metall Sin, 1990; 26: A 396 (李箭, 孙福玉.金属学报, 1990; 26: A396) [23] Zhang B, Zhang H B. J Shanghai Jiaotong Uni, 2003; 37: 1522 (张斌, 张鸿冰.上海交通大学学报, 2003; 37: 1522) [24] Bai D Q, Yue S, Maccagno T M, Jonas J J. Metall Mater Trans, 1998; A 29: 989 [25] Chang L C. Mater Sci Eng A, 2004; 368: 175 [26] Quidort D, Bréchet Y. ISIJ Int, 2002; 42: 1010 [27] Zhao J Z, Mesplont C , De Cooman B C. ISIJ Int, 2001; 41: 492 [28] Xu Z Y, Liu S K. Bainite Transformation and Bainite. Beijing: Science Press, 1991; 6: 179 (徐祖耀,刘世楷.贝氏体相变与贝氏体. 北京: 科学出版社,1991; 6: 179) [29] Zhang W, Wu X C, Min Y A. Trans Mater Heat Treat, 2008; 29: 78 (张伟, 吴晓春, 闵永安. 材料热处理学报, 2008; 29: 78) [30] Liu Z C, Ren H P. Diffusion Phase Transformation of Supercooled Austenite. Beijing: Science Press, 2007; 12: 88 (刘宗昌, 任慧平. 过冷奥氏体扩散型相变. 北京: 科学出版社, 2007; 12: 88) [31] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; A 33: 1331 [32] Hanzaki A Z, Pandi R, Hodgson P D, Yue S. Metall Mater Trans, 1993; A 24: 2657 [33] BAl D Q. S. Yue S, Maccagno T M, Jonas J J. ISIJ Int. 1998; 38: 371 [34] Bengochea R, Lo′Pez B, Gutierrez I. Metall Mater Trans, 1998; A 29: 417 [35] Fang H S. Bainite Transformation. Beijing: Science Press, 1999; 2: 59 (方鸿生. 贝氏体相变. 北京: 科学出版社, 1999; 2: 59) [36] Bramfitt B L, Speer J G.. Metall Mater Trans, 1990; A 21: 817 [37] Yang Z G, Fang H S. Current Opinion in Solid State and Materials Science, 2005; 9: 277 [38] Singh S B, Bhadeshia H K D H. Mater Sci Eng, 1998; A245: 72 [39] Hwang B, Kim Y G, Lee S. Metall Mater Trans, 2005; 36A: 2107 [40] Díaz-Fuentes M, Madariga I, Gutiérrez I. Mater Sci Forum, 1998; 284–286: 245 [41] Rodríguez-Ibabe J M. Mater Sci Forum, 1998; 284–286: 51 [42] Diza-Fuentes M, Iza-Mendia A, Gutierrez I. Metall Mater Trans A, 2003; 34A: 2505 [43] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26
[1] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[2] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[3] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[4] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[5] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[6] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[7] Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD[J]. 金属学报, 2016, 52(7): 890-896.
[8] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[9] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[10] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[11] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
[12] WANG Xinhua, LI Xiugang, LI Qiang, HUANG Fuxiang,LI Haibo, YANG Jian. CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES[J]. 金属学报, 2013, 49(5): 553-561.
[13] ZHANG Pengyan GAO Cairu ZHU Fuxian. MICROSMICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMULATE FUSION LINE IN EH40 SHIP PLATE STEEL FOR HIGH HEAT INPUT WELDING[J]. 金属学报, 2012, 48(3): 264-270.
[14] HU Zhiyong YANG Chengwei JIANG Min YANG Guangwei WANG Wanjun WANG Xinhua . IN SITU OBSERVATION OF INTRAGRANULAR ACICULAR FERRITE NUCLEATED ON COMPLEX TITANIUM–CONTAINING INCLUSIONS IN TITANIUM DEOXIDIZED STEEL[J]. 金属学报, 2011, 47(8): 971-977.
[15] SHU Wei WANG Xuemin LI Shurui HE Xinlai. NUCLEATION AND GROWTH OF INTRAGRANULAR ACICULAR FERRITE AND ITS EFFECT ON GRAIN REFINEMENT OF THE HEAT-AFFECTED-ZONE[J]. 金属学报, 2011, 47(4): 435-441.
No Suggested Reading articles found!